Virtus team (https://team.inria.fr/virtus/)
julien.pettre@inria.fr
twitter:@JulienPettre
tel: +33 (0) 2 99 84 22 36
Inria-Rennes, Campus de Beaulieu
35042 Rennes cedex, FRANCE
Julien Pettré is a computer scientist. He is senior researcher at
Inria, the French National Institute for Research in Computer Science
and Control. He is leading the VirtUs team at the Inria Center of Rennes. He received PhD from the University of Toulouse III in 2003, and Habilitation from the University of
Rennes I in 2015. From 2004 to 2006, he was postdoctoral fellow at
EPFL in Switzerland. He joined Inria in 2006.
Julien Pettré is coordinator of the European H2020 Fet Open CrowdDNA project (2020-2024), dedicated to future emergent technologies for crowd management in public spaces. He previously
coordinated the European H2020 Crowdbot
project (2018-21) dedicated to the design of robot navigation
techniques for crowded environments, as well as the national ANR JCJC Percolation project
(2013-17) dedicated to the design of new microscopic crowd simulation
algorithms, and the national ANR CONTINT Chrome project,
dedicated to efficient and designer-friendly techniques for crowd
animation.
His research interests are crowd modeling and simulation, computer animation,
virtual reality, robot navigation and motion planning.
A crowd is a gathering of many people le in a same place. The
purpose of crowd simulation research is to create computer algorithms
which compute the motion of a crowd, in order to understand, reproduce
or predict its behavior. It is generally accepted that crowd motion is
an emergent phenomenon, which means that the global crowd motion
result from all the local interactions between individuals.
Microscopic crowd simulation algorithms compute the motion of virtual
crowds in the same way: they are based on a set of numerical models of
local interactions. We have proposed several new models of local
interactions. We especially considered collision avoidance and
following interactions. We pioneered the "velocity-based" models of
collision avoidance, which enable agents to perform adaptations with
anticipation, which better reflects real human behaviors.
The design of realistic microscopic crowd simulation algorithms requires extending knowledge on individual behaviors in crowds and their repercussion at the collective scales. We have performed a number of experiments to decipher such behaviors. Through several experimental campaigns, we studied collision avoidance behaviors, following behaviors, unidirectionnal and bidirectionnal flows of people, crossing flows of people, etc. Recently, the Inria media team made a video footage about one of our experimental campaign. You will have more explanations about our experimental approach, and their links with our modelling and simulation activities.
Creating crowd animations can be a tedious task for designers. They have to play on the numerous parameters of crowd simulators to generate new animations, we can lead to few trial We explore new animation techniques, such as the crowd patches approach. In contrast with the use of simulators, in this approach, designers directly manipulate assemblies of crowd patches (pre-computed elements of crowd animations), with direct visualization of results, resulting in more intuitive techniques.
The display of interactive virtual crowds, such as for video games
or virtual reality applications requires efficient techniques to
simulate and visualize crowds. To match this requirement for
performances, we conduct perception studies to focus the available
computation resources on simulation details which count most for human
spectators.
For example, we could prove the importance of inserting full body
motion details in crowd characters motion on the perceived realism of
a crowd animation.
Virtual reality allows us to set real humans in interaction with
their digital counterparts. Doing so, we can study more detailed
situations of local interactions, perfectly control our experimental
situations, and more easily acquire experimental data.
We are currently developing this research direction to answer
scientific questions on human behaviors in crowds, which would be out
of reach without such technology.
To know more, check our papers below!
You may read our papers above, or check our Youtube channel to see all our paper submission videos. Below are few samples: