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The One-Man-Crowd: Single User Generation of Crowd Motions
Using Virtual Reality

Tairan Yin, Ludovic Hoyet, Marc Christie, Marie-Paule Cani, and Julien Pettré

Fig. 1. Snapshot of crowd motions generated using the one-man-crowd approach. A single user successively embodies each displayed
virtual agent in the order indicated by the highlighting colour (from blue to yellow). We studied 3 scenarios that replicated existing
experiments from left to right: circular unidirectional flow, bottleneck situation, inflow behaviour (entering a lift).

Abstract— Crowd motion data is fundamental for understanding and simulating realistic crowd behaviours. Such data is usually
collected through controlled experiments to ensure that both desired individual interactions and collective behaviours can be observed.
It is however scarce, due to ethical concerns and logistical difficulties involved in its gathering, and only covers a few typical crowd
scenarios. In this work, we propose and evaluate a novel Virtual Reality based approach lifting the limitations of real-world experiments
for the acquisition of crowd motion data. Our approach immerses a single user in virtual scenarios where he/she successively acts
each crowd member. By recording the past trajectories and body movements of the user, and displaying them on virtual characters, the
user progressively builds the overall crowd behaviour by him/herself. We validate the feasibility of our approach by replicating three
real experiments, and compare both the resulting emergent phenomena and the individual interactions to existing real datasets. Our
results suggest that realistic collective behaviours can naturally emerge from virtual crowd data generated using our approach, even
though the variety in behaviours is lower than in real situations. These results provide valuable insights to the building of virtual crowd
experiences, and reveal key directions for further improvements.

Index Terms—Crowd motion data, human interaction, virtual reality

1 INTRODUCTION

Crowd datasets, i.e., recordings of trajectories from numerous people
moving together in a same location, are paramount in the understanding,
modelling and simulation of crowd behaviours. For instance, these
datasets are used to study and understand collective behaviours, or to
train, calibrate and evaluate simulation models. Such datasets remain
however rare in spite of the large interest they yield. This scarcity is
due to various reasons, such as costs, logistical, ethical and technical
issues. One can imagine the effort it takes to bring many participants in
a large enough laboratory equipped with scaled tracking technologies,
or, out of labs, the technical difficulties in tracking people in crowded
public places, after obtaining the required authorisations. The current
lack of valuable crowd datasets is therefore significantly hampering
research on understanding and simulating collective behaviours.

Previous work leveraged Virtual Reality (VR) to facilitate the task
of collecting crowd data, typically by immersing a single participant
in a virtual crowd of autonomous characters [8, 49, 50] to investigate
how users behave and react. As it is generally admitted that crowd
behaviours emerge from the combination of local interactions, those
observations contribute to the understanding of crowd motions. Si-
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multaneously, the simplicity in capturing motion data in VR facilitates
observations, which avoids time-consuming post-processing steps and
eases the control and replication of experimental conditions. The re-
alism of the studied situation is however limited to the capabilities of
autonomous characters to properly react to the user’s actions. There-
fore, using this paradigm to measure and analyse large-scale crowd
phenomena presents limitations, as the collective behaviour of the vir-
tual crowd mainly results from the techniques employed to steer such
autonomous agents.

In this work, we propose to push further the idea of leveraging VR to
collect crowd data, in order to overcome these limitations. To this end,
we reconsider the idea of immersing participants among autonomous
virtual characters. We propose and evaluate a novel approach where the
motion of all virtual agents that populate the Virtual Environment (VE)
is directly created by a human participant. Rather than immersing N par-
ticipants simultaneously in the VE to embody N virtual agents, which
would fall back to the cost- and logistics-related issues, we explore a
more radical option by addressing the following question: can we col-
lect a valuable crowd dataset using VR by immersing only one single
participant successively embodying the N agents that, collectively, com-
pose a crowd? We refer to this concept as the one-man-crowd paradigm
(OMC). From a technical point of view, it is obviously possible to im-
merse someone multiple times, to embody him/her in a new agent each
time, to let him/her see the previously controlled characters moving
there, and finally to compose a moving crowd this way. However, what
would be the value of an OMC-dataset and more crucially, how would
the collective behaviour obtained compare to the real ones?

To explore this question, we replicated three real crowd experiments
with the OMC paradigm: 1D-flow, bottleneck and inflow experiments
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(detailed in following sections), which correspond to situations of great
interest in the field of crowd modelling [17,32,35]. We however do not
aim at quantitative accuracy while replicating these experiments, as the
use of VR will inevitably introduce behavioural and perceptual biases
(see Section 2.2). In this work, we hypothesise that in addition, the
OMC paradigm may bring two extra, main biases: (i) Asynchrony bi-
ases due to unilateral interactions, since only the immersed participant
can react to virtual agents, but not conversely. (ii) Variety biases due to
limited behavioural variety, since the paradigm consists in making only
one participant repeatedly walk. We used two variants of OMC to study
these possible biases: (i) S2N (Single-participant-to-N-agents), where
a single participant embodies successively the N agents of the virtual
crowd experiment (as we described above). (ii) N2N (N-participants-to-
N-agents), where N different participants successively embody the N
characters (to study the question of unilateral interactions in isolation).
The analysis of our results leads to the following conclusions: the OMC
paradigm enables a single user to generate a moving crowd with emerg-
ing, realistic collective patterns. The generated data however reflects
behavioural redundancy when a single user is repetitively immersed,
as well as limited, unilateral interaction. While immersing multiple
users (with N2N) can reduce the first bias, further researches need to
be conducted to improve OMC, and make it a logistically-simple and
time-friendly approach to capture crowd motion data.

In summary, our contributions are the following. (i) We introduce
one-man-crowd, a new paradigm to leverage VR to record crowd
datasets. (ii) We propose and evaluate two versions of this paradigm to
observe variety of behaviours in data. (iii) We evaluate this paradigm on
three well-known real-world experiments, and demonstrate that OMC
preserves some of the emerging large-scale crowd motion patterns,
despite of lack of variety and the unilateral interaction bias.

The remaining of the paper is structured as follows. Section 2
presents the state-of-the-art on the topics of acquiring real crowd
datasets and of studying collective behaviours in VR. Section 3 de-
scribes the general experimental details. Sections 4, 5 and 6 then
present and analyse the results of each specific scenario evaluated using
our OMC paradigm. Section 7 provides a general discussion of our
approach, and Section 8 finishes with the concluding remarks.

2 RELATED WORK

In this section, we first discuss the existing literature on crowd datasets,
as well as how they are usually analysed to study crowd behaviours and
to model and simulate crowds. We then discuss how the field leverages
VR to further study collective behaviours and collect data. We finally
position our work in this context.

2.1 Crowd Datasets
The realistic simulation of crowd behaviours requires the support of
real-world data of crowd motion: to study individual behaviours in
crowds [40], to understand how collective motion patterns emerge [26],
to devise knowledge-driven models [46], to train data-driven mod-
els [12], to calibrate models and evaluate simulations [61]. One can
distinguish at least 2 types of dataset: first, field datasets capture natural,
unbiased, motion (e.g., by using video tracking techniques), and sec-
ond, laboratory datasets study a specific situation or the effect of some
factors on collective behaviours. Our paper focuses on the latter type
of dataset because they are better described and can be more accurately
replicated. Only a few situations, yet of great interest, were studied
in laboratories. We selected three of them for replication according
to the one-man-crowd paradigm (unidirectional flow, bottleneck and
inflow), because those situations implicitly set an order in the role of
each participant that eases OMC replication (extension to other situa-
tions is discussed in Section 7). In the following paragraphs, we shortly
describe these three situations, explain their value in modelling crowds,
detail the analysis methods which apply to each, could that be on the
individual or larger scales to study emergent patterns.

Unidirectional (1D-)flows are composed of pedestrians moving in
the same direction [15, 62], and are interesting to study because they
are frequent in real environments (e.g., queues or traffic in narrow

corridors) with applications to safety (e.g., prediction of the evacuation
time through a set of security exits). Experimentally, they are often
reduced to a single lane of participants following one another [51, 53].
1D-flow experiments have often been replicated to understand the effect
of various independent variables: cultural parameters [13, 25], age [10,
20, 47], lighting conditions [9], environment complexity [14, 29, 55,
58], sound [63, 64], etc. 1D-flow data are analysed in different ways.
Individual variables explore relations between speed and headway.
Their aggregation leads to relations between flow and density that are
captured by fundamental diagrams. Finally, the emergence of stop-and-
go waves (similar to the ones emerging in car traffic jams) was also
investigated [30, 33].

Bottleneck stands for a flow captured in an environment whose capacity
locally decreases (typically a corridor that narrows). As for 1D-flow, the
situation is of great interest because it corresponds to daily situations
and is used to predict environment flow capacities and jams as well
as evacuation times where the environment imposes the presence of
bottlenecks [22, 27]. Such situations are analysed first by calculating
flows of people before and after the bottleneck, i.e., the number of
pedestrians passing through the bottleneck per unit time in relation with
the corridor widths [11, 34, 42, 43]. It was proved that only the smaller
width determines the output flow [1], and that personal motivation has
a large effect on the flow [2]. Finally note that the number of lanes
participants can form in the narrow part of the corridor is important to
study because it determines the flow. Humans may create lanes with
little separation by walking in a staggered pattern, called the zipper
effect [51, 52].

Inflow stands for successive entry of pedestrians into a closed area [17].
Understanding this process helps modelling traffic in public transport
systems (e.g., entering buses, trains, elevators) [18, 19, 36]. At the
individual level, existing analyses focus on the decision-making process
by participants to pick a final position in the confined space. To this end,
different calculations have been adopted such as Nearest Neighbour
Distance [36], Proxemic Floor Field [19] and more frequently Voronoı̈
Diagram [17, 36]. As shown by these studies, the search for a personal
comfort zone plays a dominant role in the decision-making process [16,
56, 59], and locations near the walls of the vehicle are preferred [37].

2.2 VR Crowd Datasets
Recent research leveraged VR to study collective behaviours using a
multi-user [41,54] or, most often, a single-user immersion in a virtually
crowded VE [44,65]. VR offers several benefits, among which: a single
participant at a time is needed, conditions can be accurately replicated,
data collection is greatly facilitated, post-processing efforts are reduced,
etc. VR has for example been used to study group interactions [8], gaze
activity in crowds [7], herding effects [50], following behaviours [49],
etc. On the one hand VR facilitates the study of collective behaviours,
but on the other hand, it simultaneously introduces a number of per-
ceptual and behavioural biases that may compromise the usability of
data collected using VR, e.g., affecting depth perception [3, 39, 48, 60],
walking speeds [5, 21], balance [28], social distances [4, 8, 23, 38], etc.
For this reason, a lot of effort has been put into the evaluation of the
effect of those biases on VR behaviours, with a common conclusion
that VR induces quantitative differences in most of spatial variables,
while participants keep behaving in a qualitatively similar manner.

2.3 Positioning
To our knowledge, our work is an unprecedented attempt to generate a
crowd dataset with a single user and no autonomous agents, as well as
to observe collective motion patterns in VR. We evaluate the capacities
of the OMC paradigm by replicating three real crowd experiments
(1D-flow, bottleneck and inflow). We selected those experiments be-
cause they are well documented and were replicated multiple times
in real-world situations to study various dependent variables, they in-
volve mostly unilateral interactions (a failure to reproduce them would
obviously completely invalidate OMC, including cases of bilateral in-
teractions), and we dispose of a solid analysis framework to compare
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a) b) c)

Fig. 2. Configuration of the three virtual experiments. Black squares delimit the 10 m×10 m experimental ground. Blue lines and circles represent
walls defining the virtual room of each scene. Red dots represent the initial position and ending position of each trial. The other dots indicate the
starting positions of each virtual character, coloured from dark blue (first to move) to bright yellow (last to move). For each trial, participants walked
from the red dot to the position of one coloured dot to trigger the experience. a) Characters are uniformly spaced out along the circular path. b) The
initial positions of characters are generated by a Poisson distribution, and ordered based on their distance to the entrance of the bottleneck. c) The
queue of characters waiting to enter the virtual lift was adapted to our experimental space.

various aspects of data, both at the individual and collective scales.
We expect the known perceptual and behavioural biases to influence
our data. However, at this stage, we are not interested in quantifying
their effect. This question was already covered by previous work on
pedestrian behaviours in VR. Our main goal is to explore whether
the new biases introduced by the OMC paradigm, namely variety and
asynchrony biases, will allow the same collective behaviours to emerge.
Will OMC enable the observation of realistic collective patterns in spite
of the lack of behaviour variety due to the singularity of the user? In
spite of the asynchronous unilateral interactions between agents?

3 OVERVIEW

The goal of this study is to investigate whether VR can be used to
acquire novel crowd motion data in an unprecedented manner, that we
call the one-man-crowd paradigm, where a single user immersed in a
virtual environment either successively acts all the characters of the
crowd (S2N) or different characters in different crowds (N2N).

3.1 Apparatus
Participants were immersed in the virtual environment (designed in
Unity 2019.4) using a Pimax 5K Head-Mounted Display (specifica-
tions: 90 Hz, 200◦ fov, 2560×1440 resolution), which provided a wide
field of view beneficial for such situations involving close proximity
with other characters. The HMD was used with 4 SteamVR 2.0 base
stations, yielding a tracking area of approximately 10 m×10 m. We
also used one HTC Vive controller in the Inflow scenario (details be-
low), which was held by the participants and used to trigger the end
of each trial. During the experiment, we recorded participants’ body
motions using an Xsens motion capture system, which was used both
to display the participants’ motions in real-time on their avatar, as well
as to animate the motions of the corresponding character in successive
trials. To enable participants to move freely in the environment, they
were equipped with a HP Z VR G2 backpack (specifications: NVidia
RTX 2080, Intel Core i7-8850H processor, 32GB RAM) running the
experiment, on which were physically connected all the devices. This
whole setup enabled participants to physically walk in the real space,
while interacting with the other characters of the virtual crowd and
seeing their own motions displayed on a co-localised avatar.

3.2 Tasks
For the purpose of this study, we designed three virtual scenarios
replicating classical real crowd motion experiments: a circular 1D-flow
situation, a bottleneck situation, and an inflow situation (Figure 1).
Each scenario is described in details below, involved N =24 or 25
virtual characters depending on the scenario, and was designed to
evaluate whether virtual situations would lead to emergent phenomena
and individual interactions similar to those observed in previous real

experiments. However, all the tasks followed the same general principle.
For a given trial Ti a single participant is immersed in the virtual
environment in one specific character ci, displaying the participant’s co-
located motions in real-time. Every character c j∈[1..i−1] is displaying
global and body motions recorded during previous trials Tj of this
specific participant (except for the baseline condition which will be
described in Section 3.3). Characters ck∈[i+1..N] are handled differently
depending on the scenario. Participants started each trial on a red
spot (located at a fixed position during the entire experiment), then
walked towards another spot located on the ground among a group
of virtual characters (initial position of character ci). Each scenario
had a specific ending condition, which would terminate the trial once
activated. Participants would then be guided back to the initial red spot
(not displayed during the actual trial) so that they would always start
new trials from the same location.

1D-flow. This scenario was designed to replicate a real-world experi-
mental condition used by Lemercier et al. [33], where 24 real partici-
pants walked behind each other in a circular space. As in the real-world
experiment, our participants were instructed to walk along a circular
path (radius: 2.4 m, i.e. trajectory length of 15.1 m) delimited by two
circular walls (inner radius: 2 m, outer radius: 4.5 m – see Figure 2-a).
The inner wall was 2 m height, to prevent participants from anticipat-
ing their future movement based on characters too far down the line.
During the experiment, participants were instructed to follow the char-
acter in front of them from the beginning of each trial, while avoiding
collisions. They were also not allowed to overtake the character in
front of them. The following characters were animated using a pre-
recorded motion capture animation (see below). They did not react to
participants’ motions, but became transparent if they overtook or went
through the participant’s avatar. For the first trial, all the characters
(except the participant’s avatar) were animated with a pre-recorded
motion capture animation so that participants could continuously ad-
just their speed depending on a previous character as in the real-world
experiment, and would not walk alone. This pre-recorded animation
was motion captured on a male confederate prior to the experiments.
The confederate was instructed to follow a virtual object in the same
virtual scene, animated using the real trajectory of one experimental
condition of Lemercier et al. [33] so that participants would respond
according to accelerations and decelerations observed in a previous real
situation. Using the same pre-recorded trajectory and animation for
each participant to initially follow also helped to ensure comparable
situations in the following analyses. In each trial, participants walked
for a duration of 60s, after which they were instructed to return to the
initial location indicated by the red spot.

Bottleneck. This scenario was designed to replicate a real-world ex-
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perimental condition used by Liddle et al. [35], where a group of 24
participants were asked to walk through a real corridor (bottleneck). As
in the real-world experiment, our participants were instructed to walk
through a virtual bottleneck (1.2 m wide, 2 m long – see Figure 2-b),
while avoiding collisions with virtual characters and attempting to exit
the bottleneck quickly. Before starting a trial, participants joined the
other virtual characters in a 7 m×2 m waiting zone, located 2 m from
the entrance of bottleneck. Unlike in the previous situation, only the
first c j∈[1..i−1] virtual characters were animated during trial Ti. The
other characters ck∈[i+1..N] remained idle in the waiting zone, but were
presented to participants at the beginning of the trial so that they had a
sense of the number of characters involved in the scenario. The trial
ended when the participant went beyond a red line on the ground, in-
dicating that they had exited the bottleneck. Also, the order of acting
the virtual characters was based on their initial distance to the entrance
of the bottleneck (from minimum to maximum), so that participants
would first act virtual characters closest to the entrance.

Inflow. This scenario was designed to replicate a real-world experimen-
tal condition used by Ezaki et al. [17], where a group of 25 participants
were asked to enter one after another into a lift. As in the real-world
experiment, our participants were instructed to stand in a line of virtual
characters, then to enter a virtual lift of 3.6 m×3.6 m (see Figure 2-c)
and to choose a place to stay once they entered it. The entry of the
lift was 60 cm wide to limit participants’ view so that they could not
perceive the position of the virtual characters that had already entered
the lift. As for the bottleneck scenario, only the first c j∈[1..i−1] virtual
characters in front of participants were animated during trial Ti, using
participants’ recorded animations from previous trials. The other char-
acters ck∈[i+1..N] remained in their original position, but were presented
standing in line with an idle motion to participants at the beginning
of the trial so that they had a sense of the number of characters that
should enter the lift. At the beginning of this scenario, we insisted that
participants should take into account that all the 25 virtual characters
should be able enter the lift, and therefore that they should choose their
position during each trial to enable the remaining characters to enter
the lift as well. The trial ended when the participant considered that he
had reached his wanted position and was facing the entrance, which
was indicated by participants pressing the trigger on the HTC Vive
controller that they were holding in this scenario.

3.3 Experimental Design

Upon their arrival, participants read and signed the experiment consent
form, during which they were presented the task to perform. They
were then equipped with the Xsens motion capture system, the VR
backpack, as well as the Pimax 5K HMD. Calibration of the motion
capture system was then performed to ensure motion capture quality,
as well as to resize the avatar to participants’ dimensions. Participants
then first performed one trial of each scenario presented in Section 3.2,
contributing to the creation of the N2N baseline (N-participants-to-
N-agents) described below, after which they performed a full single
scenario, referred hereafter as S2N (Single-participant-to-N-agents).

N2N baseline: trajectories and motions of the N characters in the
crowd were created successively by N different participants. For each
scenario, participant i only took the role of the i-th character ci, while
the c j∈[1..i−1] previous characters were animated based on recorded
animations and trajectories of the previous i−1 participants. Partici-
pants always performed a trial of the 1D-flow scenario first, then the
bottleneck scenario, and finally the inflow scenario.

S2N procedure: a single participant created successively the trajec-
tories and motions of all the N characters in the crowd, by taking the
role of one character at a time. Each participant took part in a single
scenario, comprised of 24 or 25 trials (depending on the number of
characters to act). It is also important to point out that participants were
never told during the experiment that they would be interacting with
previous versions of themselves (see Section 7 for further discussion).

3.4 General Hypotheses
Our general hypotheses are related to the possible effects of all the
perceptual biases (e.g., distance or self-motion perception), behavioural
biases (e.g., slower walking speeds), variety biases (e.g., single user in
the S2N case) and asynchrony biases (e.g., unilateral interactions) on
the data generated by the OMC approach.

• H1: At the individual level, quantitative differences are expected
between real and OMC virtual data. Aside from this, we expect a
high similarity with real data, and to preserve existing relations
between analysed variables.

• H2: On the collective scale, the OMC paradigm will lead to a lack
of variety in data, meaning that S2N data could be considered as
a subset of real or N2N data (e.g., S2N data distributions included
in real data distributions). Moreover, N2N data will be more
similar to real data than S2N data.

• H3: We expect that both N2N and S2N conditions will enable
us to observe the emergence of crowd motion patterns, as the
scenarios that we replicate involve mostly unilateral interactions.

As an important note, we explore those hypotheses in the light
of qualitative analyses described in the following sections. As we
replicate experiments designed by the crowd modelling community, we
also replicate the analysis framework that was performed, and discuss
the most striking effects we can observe. This choice is discussed in
Section 7.

3.5 Participants
We recruited 25 participants for our experiment (age min=22, max=32,
avg=26.8±3.1), which is the minimum number of participants required
for the creation of our virtual baseline data. To avoid biases caused
by motion characteristics coming from different genders, as well as
to embody participants in gender-matched avatars, we recruited only
male participants. Participants were recruited through internal emailing
lists amongst students and staff, were all naive to the purpose of the
experiment, had normal or corrected-to-normal vision, and gave written
and informed consent prior to the experiment. The study conformed to
the declaration of Helsinki.

For simplicity, as participants took part both in the N2N and S2N
procedures, we attribute an ID from #1 to #25 to each participant, with
respect to their participation order in our experiment. This means that
participant #i took the role of the i-th character in the N2N baseline sce-
narios. Participants #1 to #8 then performed the 1D-flow S2N scenario,
participants #9 to #16 the bottleneck S2N scenario, and participants
#17 to #25 the inflow S2N scenario.

4 UNIDIRECTIONAL FLOW

By virtually replicating Lemercier et al.’s experiment [33], we expect
to also replicate a number of real-world observations they made: the
emergence of stop-and-go-waves, specific relations between individual
speed and headway, as well as resulting fundamental diagrams. We
also wonder whether the absence of physical constraints in VR will
lead to unrealistic situations, such as overlaps between agent positions.

4.1 Analysis & Results

Data processing. For this experiment (only), participants positions pi
are computed according to a polar coordinate system centred on the
circle path they follow: ppolar

i (t) = [θi(t);ri(t)]. We are only interested
in the evolution of θ , as ri(t) is almost constant since participants walk
along a circle. We approximate r by its mean value rmean. The position,
speed and acceleration can thus be reduced to:

pi(t)≈ θi(t)rmean
vi(t)≈ θ̇i(t)rmean
ai(t)≈ θ̈i(t)rmean

(1)

Stop-and-go waves. Figure 3 plots all the trajectories recorded for one
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Fig. 3. Illustration and results of the calculation of propagation speeds. a)-b) Local maxima and local minima of pedestrians’ speed, and result of
linear regression. a) Result of #3 (dashed line: pre-recorded trajectory of the first character). b) Result of Lemercier et al. [33]. c) Average and SDM
results of all S2N (#1 to #8), N2N and real-world data (R).

given S2N dataset in parallel with real data from Lemercier et al. [33].
On the S2N plot, the upper blue dashed curve corresponds to the first
agent moving in the circle, i.e., the pre-recorded confederate reference
trajectory. As we said in Section 3.2, this trajectory reproduces a real
case (center plot) and is made of periods where the confederate walks,
stops, and walks again, etc. The plot makes evident that the stops of
the confederate propagated backward in the 1D-flow, with a certain
propagation speed. Jelic et al. [30] proposed a method to compute the
speed of counter flow propagation, by computing the local extrema of
vi(t), and by performing a linear regression on the obtained points, as
illustrated in Figure 3. The rightmost plot shows the distribution of the
obtained speed values for all the trials of each participant, as well as
for the example from Lemercier et al.’s real experiment. This figure
shows that S2N experiments resulted into both faster and slower waves
propagation speeds, depending on participants, and that N2N resulted
in in-between values, close to real ones.

Reaction time and following distance. Lemercier et al. [33] found
that participants in a 1D-flow were mainly matching the speed of their
predecessor, trying to cancel ∆vi(t) = vi(t)− vi−1(t). They also found
that the propagation speed of waves was probably determined by partic-
ipants’ reaction time τ when matching speed, and that the wave could
be damped or resurge depending on the following distance between in-
dividuals pi(t)− pi−1(t). We followed the procedure proposed in [33]
to estimate reaction-times (for each participant, and for each time frame
of data). We estimate τ∗(t) on a moving time window W :

τ
∗
i (t) = argmax

τ
(ai(t)⋆∆vi(t + τ)) (2)

where ai(t) is the participant’s acceleration and ⋆ the cross-correlation.
Figure 4 plots the obtained distributions for reaction time as well as
following distances for each dataset (S2N and N2N) in comparison to
values obtained for Lemercier et al.’s experiments [33]. This figure
shows that the range of observed reaction times is very close between
OMC-S2N or N2N and real. On average, participants matched the
speed of their predecessors with a delay of 0.5 s.

Fundamental Diagram. We computed the fundamental diagram that
captures relations between speed and density. As in [30], we considered
local density and speed, i.e., where ρi(t) = (pi(t)− pi−1(t))−1. We
smoothed values by adopting the following binning procedure. We first
calculated the density-speed pair (ρi(t),vi(t)) for each character i at
each time step t. We then sorted all the density-speed pairs from the
minimum density to the maximum, and separated them into 960 bins of
K elements each (K = 180 in our experimentation). We then computed
the average density and speed per bin as:

ρ̄ =
1
K

K

∑
n=1

ρn v̄ =
1
K

K

∑
n=1

vn (3)

Figure 5 plots the resulting pairs, for all S2N, N2N as well as the real
example from [33].

Global density. In real 1D-flow experiments, participants’ positions
are restricted by the circle they follow, which gives a global density. In
OMC virtual replications, since participants only see characters in front
of them and cannot feel the physical constraints imposed by participants
behind them, nothing prevents them from forming circles where the
positions of the first characters overlap with the positions of the lasts.
This explains why we gave an initial position to the participants out of
the circle and asked them to get to their position in the queue: doing
this allowed them to get an estimate of the global density, and we here
check whether this global density was matched all along the trial and
whether character positions overlapped. To this end we compute the
total length L(t) of the circle formed by characters as the sum of the
distance between each pair of predecessor-follower as follows:

L(t) =
N

∑
i=2

pi(t)− pi−1(t) (4)

As can be seen in Figure 4-c, the length of the 1-D queue exceeds the
perimeter of the circle for a few participants, indicating the emergence
of overlapping: the expected global density is not matched.

4.2 Discussion
Figure 3 illustrates the striking similarity in data we could obtain be-
tween Lemercier et al.’s real experiment and their OMC replication.
The complete set of results are provided as supplementary material.
Especially, we were able to observe as expected the propagation of
stop-and-go waves for all participants, which validates H3 (emergence
of collective phenomena) for this scenario. The further analysis of
wave characteristics however reveals quantitative differences, as ex-
pected by H1. Real experiments resulted in wave propagation speeds
limited to 0.57±0.09 m.s−1, while a larger range could be observed
in S2N datasets (0.69±0.24 m.s−1). Moreover, due to a lack of vari-
ety (i.e., the same participant acting all the characters in the crowd),
the S2N procedure resulted in participant-specific values. On the con-
trary, N2N results mixed and averaged these participant-specific be-
haviours. For instance, the propagation speed of waves in N2N results
(0.66±0.03 m.s−1) is close to the average of all our S2N datasets. As
stated in H2, N2N lowers the effect of lack of variety, even though N2N
wave propagation speeds remain different from real values. However,
as real and OMC values were obtained over two different sets of par-
ticipants, a more strict OMC-real comparison would need additional
experiments, which is discussed in Section 7.

According to their 1D-flow model, Lemercier et al. found that
wave propagation speeds mainly depend on participants’ reaction time
to match the speed of their predecessor. This is consistent with our
analysis of reaction time. For instance, participants #7 and #8 displayed
both the lowest reaction times and the fastest wave propagation. As
a result, when different participants mix in the N2N procedure, the
resulting wave speed gets averaged as a result of individual differences
in reaction times. We can however observe that participants with the
lowest reaction times are the ones with the highest following distances.
This suggests that they might simply be more careful and attentive, and
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Fig. 4. a) Reaction time. b) Following distance. c) Total length of the circle formed by characters (the red dashed line indicates the physical length of
the path). #1-#8: S2N results. R: Real-world data [33].
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Fig. 5. Fundamental Diagrams showing the velocity-density relationship.
Left: Results of the S2N procedure separately plotted. Right: Compared
to real-world results, data generated by our method seems to be trans-
lated towards higher density level.

that this individuality gets amplified by making them interacting with
themselves. However, it is also possible that differences in reaction
times in VR could be related to biases in the perception of distances,
as objects typically look closer in VR than in real life [39]. Exploring
whether perceived proximity to predecessors could make participants
more reactive would however need to be explored in future experiments.

The analysis of fundamental diagrams leads us to similar conclu-
sions. From Figure 5 we can see the speed-density pairs of each S2N
result locate around the ones of real cases, with a distorted shape caused
by the personal preference of each S2N participant and the lack of va-
riety (H1). Thus, we could think that the real or N2N fundamental
diagrams could result from the combination of the obtained S2N dia-
grams. Again, the N2N condition partly solves issues related to lack of
variety, and the corresponding fundamental diagram has a more similar
coverage compared to the real one (H2). However, note that funda-
mental diagrams of both the S2N and N2N procedure are also shifted
compared to real data. This result indicates that participants tended
to walk faster than in real life with the same local density. While this
contradicts previous studies which found slower speeds in VR [21], one
possible cause of this phenomenon is the absence of contact rendering
combined with HMDs’ reduced field of vision: participants may not
be able to see the entire body (of themselves and of their predecessor),
especially the lower part. The physical space to perform walking mo-
tion was also not constrained by the presence of the physical legs of
a real predecessor, resulting in larger steps and faster walking speed.
Note that in real experiments, these physical constraints result into step
locking behaviours as studied by Jelic et al. [31].

Finally, we feared that the absence of physical constraints would
lead to overlaps between agents position. For example, the beginning
of the queue of agents may overlap its end. During the experiment, we
did not render agents in this situation to avoid disturbing participants,
as these agents would otherwise block their vision and traverse their
avatar. We however compared the length of virtual queues against
real ones (which are obviously bounded by the physical length of the
circular path), as displayed in Figure 4-c. Our results provide mixed
conclusions. Some participants clearly adopted following distances

which, accumulated, violated the limit of the path length (e.g., #6 and
#7), whereas most participants finally adopted distances that matched
the expected global density. This suggests that our choice of making
participants able to observe the global density by giving them a starting
position out of the circle, then joining in the space allocated to them in
the circle, somehow enabled most participants to be aware of the global
density to be matched. This result also suggests that this choice might
have had a persistent effect through the experiment, and that physical
differences from real situations inherent to this virtual setup might be
in some ways attenuated with careful organisation.

As a final point, we discuss the choice to animate the first agent in the
circle using motions pre-recorded by a confederate. It was motivated by
two reasons. First, in real experiments, stop waves are initiated by the
first participant in the circle being blocked by the presence of the last
one. This would have raised a problem in the OMC replication since the
last agent motion is recorded last. Also, as the confederate replicates
the motion of the first participant in Lemercier et al.’s experiment, doing
this enabled us to perform a strict comparison between real and virtual
data as illustrated in Figure 3, as well as to ensure that all participants
were presented with the same initial condition. While requiring to
record specific animations prior to an experiment might be limiting in
some situations, we believe that approaches replicating characteristics
of an observed trial could be also used, e.g., from recorded videos.

5 BOTTLENECK

In this replication of a bottleneck experiment [35] we explore the
biases introduced by the unilateral interactions, as participants need to
negotiate with people coming from their side to enter the bottleneck.
We evaluate the resulting number of lanes in the bottleneck as well
as fundamental diagrams, since they are useful outcomes of such an
experiment.

5.1 Analysis & Results

Lane formation. To count the number of lanes, we reproduced the
method described in [52] to estimate the probability to find a pedestrian
at a certain lateral position px inside a measurement zone (a corridor
section along the y axis) with −0.6 m ≤ x ≤ 0.6 m and 0.5 m ≤ y ≤
1.5 m (see Fig. 2). Example trajectories are illustrated in Figure 6. The
distribution of lateral positions (binned) is presented in Figure 7. Real
data corresponds to the results of the experiment performed in [35].
The number of formed lanes can be easily observed by counting the
number of peaks in the distribution. For the real data, we can see that
2 lanes emerge. More difficult to appreciate from static plots only,
the little distance separating the lanes results from the zipper effect
(staggered walking pattern, see the companion video for illustration).
Interestingly, OMC led to two extreme kinds of lane formation: a
parade neatly lined up and a perfect formation of 2 lanes going through
the bottleneck (as it can be seen in Figure 6-a and -b respectively).
Meanwhile, most of our results present a mixed pattern between these
two extreme results, resembling the N2N result presented in Figure 6-c
which exhibits a normal distribution of lateral positions. Figure 6-a
displays what can happen in the case of a single lane, where participants
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a) S2N #9 b) S2N #16 c) N2N d) Real data [35]

Fig. 6. Comparisons of lane formations in different conditions. Trajectories are coloured by the order in which participants acted as virtual pedestrians
(see Figure 2). a) A typical result where virtual pedestrians walk neatly on a single lane (participant #9). b) A typical result showing clearly the
formation of 2 major lanes in the bottleneck (participant #16). c) Trajectories resulting from the N2N procedure. d) Trajectories of 24 pedestrians
entering the bottleneck in the real-world experiment [35].

lined up by first walking directly towards the end of the parade, instead
of gathering together around the entrance (as observed in most other
trials, e.g., the N2N one). Additional S2N examples are also included
in the supplementary material.

Bottleneck fundamental diagram. Fundamental diagrams capture
relations between density and flow, but flow in a bottleneck linearly
depends on its width [52]. To make the diagram independent to the
bottleneck width, we study the specific flow Js (as defined in [52])
which represents the flow per unit of space, computed as the product of
density ρ and the flow speed v:

Js = ρv (5)

The estimation of ρ and v is performed on a section of the corridor
(y ⊂ [0.5 m,1.5 m]). ρ is computed according to the method proposed
by [57] (that guaranties continuity with respect to time):

ρ(t) =
∫

A P(x, t)dx
|A|

= ∑
i

∫
A Pi(x, t)dx

|A|
(6)

where A represents the measurement area, P(x, t) is the probability
density of having a pedestrian at position x at time t, Pi(x, t) is the
corresponding probability density for pedestrian i at time t, and is
supposed to be uniform on the Voronoı̈ cell of the pedestrian. With
this definition, N(t) = ρ(t)|A| denotes the number of pedestrians in
the considered section of the corridor and is continuous even when an
agent enters in or exits from the section. We then compute the flow
speed by a weighted averaging method as follows:

f (t) = ∑
i

∫
A Pi(x, t)dx

N(t)
vi(t) (7)

where the speed vi of pedestrian i is numerically derived from its
position. We present the fundamental diagram resulting from specific
flow against local density in Figure 8. This figure shows that the range
of speeds participants walked at are similar between S2N and N2N.
The specific flow values are also clearly lower for OMC than real
data, confirming the effect of a 1-lane traffic where a 2-lane one was
expected, resulting into a loss of flow. We also consider that walking
speed, known to be slower in VR, may have accentuated this loss of
flow.

5.2 Discussion
In this second experiment, we attempt to validate the idea of generating
a crowd walking through a bottleneck with the OMC paradigm. We
selected a bottleneck width where, in real experiments, a 2-lane traffic
starts emerging (the full real experiment studied corridor width as
a dependent variable). Our attempt was not always successful: few
participants formed 2 lanes, most only 1 lane, and we could observe
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Fig. 7. Probability to find a pedestrian at position x inside the exit mea-
surement zone −0.6 m ≤ x ≤ 0.6 m, 0.5 m ≤ y ≤ 1.5 m.

Fig. 8. Estimated specific flow with respect to instantaneous local density.

specific queuing up behaviours. We believe that the non-emergence of
a 2-lane traffic can be explained by perceptual and variety biases: i)
some participants may have perceived the corridor to be smaller and
considered that only a 1-lane traffic would fit, and ii) the S2N procedure
resulted in the same decision made by the participant trial after trial,
and sometimes resulted in specific trajectories like the one showed
in Figure 6-a. This validates hypothesis H1, showing quantitative
differences between real and OMC virtual data at the individual level.
However, we believe that this effect could be further studied based on
previous work on passability judgement tasks in VR [24]. Indeed, the
question of the number of lanes fitting a given corridor width could
be turned into one of passability into a gap. It might therefore be
relevant to replicate the full Liddle et al. [35] experiment with corridor
width as a dependent variable, so as to observe transition width (from
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a) S2N #18 b) S2N #21 c) N2N d) Real data [17]

Fig. 9. Final position for different experiences. The entrance of the lift is located on top-middle. Each cell is colored by the local density of each
position, truncated at 3 ped.m−2. a)-b) Two typical S2N results. c) N2N result. d) One real-world result [17].
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Fig. 10. Evolution of a) how far pedestrians walked along the direction of
their final position and b) personal space area, with respect to the order
of entering, for S2N, N2N and real-world results, respectively averaged
over 8, 1 and 9 experiences.

1 lane to 2 lanes for example) in a VR context. As expected from H2,
N2N prevents this individual-specific decision on the number of lanes
to form to be repeated trial after trial. Our interpretation is that, all
together, participants varied the decision to form a 1-lane or a 2-lane
traffic, which resulted in a uniform distribution of lateral positions.
H3 is therefore only partly validated, as the expected pattern could be
observed in some trials, but this was not always the case.

Finally, it is quite clear that the fundamental diagram analysis enables
observing the large quantitative differences in the measured flows:
the absence of emergence of a second lane in most cases completely
offsets flow values in similar densities. This highlights the need for
awareness of quantitative differences of experiments performed in VR.
Nevertheless, we also observed a consistency between the S2N and
N2N results, as well as that the relation between specific flow and
density is preserved compared to real world results (flow decreases
when density increases, with similar slopes).

6 INFLOW

Different from the two previous experiments where we study moving
crowds, we here focus on entering into a virtual confined space by
replicating [17] and investigate how participants decide which position
to occupy. While previous experiments explored motion interactions
with predecessors, here we explore more how people interact with their
environment and the whole crowd: people pick the position they would
prefer, also being conscious that a number of people have to fit. We
here present the corresponding analysis in terms of participants’ final
positions and personal space.

6.1 Analysis & Results

Final positions. Final positions picked by participants are illustrated
in Figure 9, along the corresponding Voronoı̈ diagram, for two S2N
examples, the N2N and a real data example from [17]. The figures show
both the order in which the positions were picked, and the personal
space participants preserved around them.

Following the analysis performed in [17], we can further analyse
the position picking strategy by representing positions according to
the polar coordinate system (ri,θi) centred at the entrance. For each
direction θi, we calculate the distance rmax(θi) between the pole and
the wall in the corresponding direction. As the maximum distance
is different in each direction, we compare the normalised distance
rni = ri/rmax(θi), to figure out how far, between the entrance and the
wall, participants went. Figure 10 shows the normalised distance to
the walls with respect to the order of entrance. In comparison to OMC,
the real results show a higher preference towards positions close to the
wall. The more noisy N2N plot (but with no repetition) exhibits more
varied strategies, and little influence of the walls.

Personal space. To further explore individual behaviours, we computed
the final personal space for each agent, which is here defined as the
area of each agent Voronoı̈ cell (see Figure 9). The result is presented
in Figure 10-b, with personal space presented with respect to the order
of entering.

6.2 Discussion

In this experiment we explored the strategy of picking a position in
a virtual room when being filled by a crowd. By analysing the posi-
tion picking order, it is clear that emergent patterns appear, but differ
between real and virtual ones. Pedestrians in the real-world experi-
ment chose their position in a sequence of U-shape formations with
outer, middle and inner layers (Figure 9-d). In contrast, pedestrian in
our OMC experiment would rather fill the room from the back to the
front in a succession of flat rows, more or less organised depending on
participants (e.g., Figure 9-a and -b, as well as additional examples in
supplementary material). Looking at all OMC results, the corner area
near the entrance seems to be rarely used, which differs from real-life
scenarios. This difference can be explained by hypothesis H1. We have
two possible reasons in mind. First, real and virtual walls play different
roles: real walls can for example be used to lean on, which is obviously
not the case of virtual ones. This can explain the preference to stand
close to them first in real experiments (U-shape formations). Also, in
the OMC procedure, participants do not have to exit the room at the
end of the trial: the VE disappears, and they move back to the initial
position. This might decrease the importance of standing close to the
entrance (that a U-shape formation will give). We also observed that
OMC participants stood further from walls than in reality, suggesting
that the perception of the distance to objects in VR might have had
quite an important effect on final positions, at least those close to walls.

More generally, the evolution of the virtual pedestrians’ personal
space (Figure 10-b) indicates that during each S2N experience, partici-
pants usually left themselves a larger personal space than in real-life.
Furthermore, once they found out that the first virtual agents had oc-
cupied a too large space for everyone to fit comfortably, they would
overreact by enormously sacrificing their personal space. This is re-
sponsible for the fast dropping of personal area in the S2N results,
and the relatively large personal space in the N2N result, which is not
observed in real experiments.
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The lack of variety also led to specific emergent patterns, validat-
ing H2. This can be seen in Figure 9-b, where the participant clearly
applied a strict strategy to fill the room, ending up in a very regular
squared pattern. The N2N procedure successfully breaks this regu-
larity (Figure 9-c), and we can see some irregular strategies, such as
participant #24 picking the corner position in the back of the room
whereas other last participants more preferably picked positions next
to the door. Nevertheless, emergent patterns resulted from the OMC
procedure, validating H3.

7 GENERAL DISCUSSION

Methodology. In this work, our methodological approach consisted in
replicating several existing experiments in VR with our OMC paradigm.
We relied on existing analysis frameworks typically used in the crowd
modelling community to evaluate our results according to common
practice from this community. While this involved to rely on qualitative
evaluations, we believe this approach was more relevant to provide a
first evaluation of the OMC paradigm. Apart from some limitations
discussed below, our conclusion is that we successfully replicated three
experiments that involve, mostly, unilateral interactions. Successfully,
because we were able to replicate the observation of some existing,
already known and observed, emergent phenomena. This is a major
difference with previous studies in VR on collective behaviours that
focused on individual analyses of local variables (e.g., [8, 49, 50]). It
is also clear that the biases we expected influenced to some extent
the observed emergent phenomena. However they mostly affected the
characteristics of those phenomena without preventing their natural
emergence. We were also able to observe which characteristics were
affected and how, and could provide interpretations based on some
formulated hypotheses.

While our analyses relied on qualitative analyses, we also believe
that quantitative analyses will be important to explore in the future. For
instance, a quantitative analysis would ideally require to perform again
the real experiments with the same group of participants experimenting
OMC. Given that our goal was to evaluate the potentialities of the OMC
paradigm, the effort required to conduct such a real experiment would
have prevented us from exploring the variety of scenarios we could
cover here. At this stage, it would also be relevant to quantitatively
evaluate the effect of several specific biases on our results. One in-
teresting direction would be for instance to replicate studies on the
effect of known dependent variables (e.g., age, density, corridor width).
E.g., does the effect of age on 1D-flow can be reproduced using OMC?
While characteristics of emergent phenomena are biased, would the
effect of dependent variables still be observed and exploitable?

S2N vs. N2N. Our results suggest that the variety bias seemed to
have influenced the most the characteristics of emergent collective
phenomena. More specifically, the S2N procedure led in some cases
to a replication across all agents of some specific individual behaviour,
that could be observed as a sort of pattern exaggeration. Such extreme
observations, which were reported in the discussion of each experiment,
included the formation of single or extremely distinct lanes (Figure 6-a
and -b), or entering the virtual room in a overly-organised manner
(Figure 9-b). Since N2N solves the effect of this bias efficiently, we
could claim that OMC-N2N is the only viable solution here. However,
S2N is more convenient in practice because N2N still requires to involve
many participants to create new crowd motion datasets. Therefore, to
further explore potentialities of OMC-S2N, we still have two main
questions opened to be addressed in the future. First, would the average
of data resulting from multiple S2N datasets be equivalent to a N2N
dataset? In other words, could we deduce the characteristics of a
phenomenon emerging from interactions between various people given
multiple ones emerging from interactions with oneself? The second is
about possibilities for a M2N procedure, where M participants would
control N agents, while keeping M as small as possible compared to N
in order to keep the advantage of recruiting few participants to generate
large datasets. Future work would then investigate what would be the
required M value to cancel the effect of the variety bias.

Character animation details. OMC agents replicate participants’
behaviours in a limited way. E.g., we captured their full-body motions
using a motion capture suit, but neglected their gaze activity, which is
known to play a great role in human interactions, while difficult to study
in practice. Other modalities, like sound, were not recorded. Therefore,
we would like to explore the possible benefit of capturing more detailed
behaviours and incorporating them in the VE, as well as to explore
novel ways of making participants aware of the physical presence of
characters (e.g., evaluating the benefits of rendering contacts using
haptics [6]). Another option would be to edit recorded behaviours, for
example to change agents’ motion style, which may provide another
solution to lower the effect of variety bias. This would also raise novel
questions, e.g., would that prevent participants to understand that they
are interacting with themselves? Would a single participant behave in a
more varied way given that he/she visualizes more varied motions?

Generalising interactions. Did participants realise they were interact-
ing with themselves? The gross answer is that half of them reported
yes, while this proportion depended on scenarios (all participants for
1D-flow, 2 for bottleneck, and 3 for inflow). For them, it was clear that
interactions would be limited to unilateral ones, and that visible agents
would never respond to their actions. While this is a limitation of OMC
that will be difficult to overcome, we believe a number of solutions can
be explored in the future to generalise the type of interactions that can
be performed with OMC. The first one is to decompose interactions into
multiple sections of time where participants control alternatively agents,
similar to what Osimo et al. [45] did for building conversations with
one-self (which was one source of inspiration for OMC). The second
solution would be to perform the S2N procedure multiple times. For ex-
ample, in a dual interaction between agents A and B, let the participant
controlling A, then B to unilaterally interact with A, and then A again
to interact unilaterally with B, etc. This raises new important questions,
such as whether multiple unilateral interactions can converge (or not)
toward the result of a bidirectional interaction. The third solution is to
use a collision avoidance techniques to override previously recorded
trajectories when a character is on a short-term collision course with
the user. This consists in making a local and interactive adaptation of
the trajectory, only when necessary, to avoid unrealistic situations. This
solution has however a clear drawback: as mentioned in the beginning
of this paper, modifying trajectories in such a procedural manner might
reduce the realism of the generated dataset. With three possible choices,
we believe that those solutions will enable us to generalise the use of
OMC for other types of scenarios, e.g., studying collision avoidance
strategies, large-crowd interactions, etc.

Generalising scenarios. As previously mentioned, our study priori-
tised the replication of crowd scenarios mainly involving unilateral
interactions. However, daily situations would include multi-lateral in-
teractions as well, which makes scenarios extending beyond unilateral
interactions our next target. While we anticipate new artefacts resulting
from those scenarios, we have conducted a preliminary experiment ex-
ploring them to gain insights about their real nature and importance. We
refer the reader to the supplementary material for a detailed description
of these preliminary attempts. We summarise them and provide our con-
clusions hereafter. We designed 2 different scenarios which involved
multi-directional interactions, using the same OMC-S2N setup. The
first scenario consists in a Crossing Circle, where participants stand on
the perimeter of a circle and are asked to reach the diagonally opposite
position. We performed this scenario under two different density levels
(12 or 24 characters around the circle). The second scenario consists in
a 90◦ Crossing Flow, where two groups of 12 characters each cross at
a 90◦ angle. We compared both the OMC results to real-world record-
ings of similar situations. Our main observations, which remain to be
validated by a formal experiment with quantitative analysis, are the
following. In multi-lateral interaction OMC scenarios, we observed
that the participant displayed strategies similar to real-world ones. For
example, users chose to cross the circle either by going straight through
the circle centre, or by going around the centre, avoiding this area of
higher friction between people. In other words, they used strategy
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consisting in playing on speed or curvature of their trajectory to avoid
collisions. In the Crossing Flow scenario, we observed that the partici-
pant passed often through the scene’s edge to avoid interactions with
others characters. This was not observed in real situations. Noticeably
however, in both of these two scenarios, we observed that despite the
complexity of these scenarios, the participant rarely collided with the
virtual characters (no more than once per scenario). This is a very
important observation, given that the two scenarios have different diffi-
culties in terms of collision avoidance. For instance, in the Crossing
Circle, characters arrive from a large number of directions, whereas in
Crossing Flow the density might occasionally increase and decrease.
These two features can both make difficult collision avoidance. These
observations suggest that the OMC paradigm is promising to study
situations of multi-lateral interactions, where participants seem to be
able to appropriately react to complex cases. Meanwhile, although
the effect need to be verified by future experiments, it’s interesting to
evaluate the use of local adjustments of previously recorded trajectories
to make characters reactive to the user. With this, we may correct the
tendency of users to unrealistically avoid zones of to high frictions that
we observed in the crossing flow scenario.

8 CONCLUSION

In this paper, we explored the use of VR to overcome cost and logistics
concerns raised by real crowd experiments, which are paramount in the
crowd simulation community, and proposed the OMC paradigm. To
evaluate this approach, we replicated three typical real-world experi-
ments (1D-flow, bottleneck and inflow scenarios). For each experiment,
we evaluated two versions of the paradigm, one where a single partici-
pant generates the whole dataset, and one where multiple participants
generate it asynchronously. We compared the generated data with real
data and our analysis shows that both versions of the OMC paradigm
lead to crowd motion data with realistic emergent patterns, despite
some quantitative differences. One novel issue we faced is the role of
variety and unilaterality biases that were specific to our approach. We
reached the same general conclusion than previous work that used VR
to generate behavioural datasets: qualitative similarity in behaviours are
observed, while quantitative differences also appear in the phenomena
we considered. Furthermore, unlike real experiments which generally
only capture global positions, our experiments resulted in novel VR
crowd datasets, describing full-body movements as well as global tra-
jectories in crowds, which we will share with the community in the
hope to foster novel ideas and applications. While the OMC paradigm
presents some limitations, it opens new opportunities for research on
collective behaviours. Previous work demonstrated the benefit of VR
to explore collective behaviours at the individual scale. We here open
ways to overcome limitations imposed by autonomous agents capabili-
ties used to populate VR scenes, and also enable observing collective
large-scale phenomena.
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[46] J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual, and S. Donikian. Experiment-
based modeling, simulation and validation of interactions between virtual
walkers. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics
symposium on computer animation, pp. 189–198, 2009.

[47] X. Ren, J. Zhang, W. Song, and S. Cao. The fundamental diagrams
of elderly pedestrian flow in straight corridors under different densities.
Journal of Statistical Mechanics: Theory and Experiment, 2019(2):023403,
2019.

[48] R. S. Renner, B. M. Velichkovsky, and J. R. Helmert. The perception of
egocentric distances in virtual environments-a review. ACM Computing
Surveys (CSUR), 46(2):1–40, 2013.

[49] K. W. Rio, G. C. Dachner, and W. H. Warren. Local interactions underlying
collective motion in human crowds. Proceedings of the Royal Society B:

Biological Sciences, 285(1878):20180611, 2018.
[50] A. Rı́os and N. Pelechano. Follower behavior under stress in immersive

vr. Virtual Reality, 24(4):683–694, 2020.
[51] A. Seyfried, M. Boltes, J. Kahler, W. Klingsch, A. Portz, T. Rupprecht,

A. Schadschneider, B. Steffen, and A. Winkens. Enhanced empirical
data for the fundamental diagram and the flow through bottlenecks. In
W. Klingsch, A. Schadschneider, and M. Schreckenberg, eds., Pedestrian
and evacuation dynamics 2008, pp. 145–156. Springer-Verlag Berlin, 2010.
doi: 10.1007/978-3-642-04504-2 11

[52] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht, and
W. Klingsch. New insights into pedestrian flow through bottlenecks.
Transportation Science, 43(3):395–406, 2009.

[53] A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes. The fundamental
diagram of pedestrian movement revisited. J. Stat. Mech., p. P10002,
2005.

[54] S. Sharma, S. Otunba, and J. Han. Crowd simulation in emergency aircraft
evacuation using virtual reality. In 2011 16th International Conference on
Computer Games (CGAMES), pp. 12–17, 2011. doi: 10.1109/CGAMES.
2011.6000319

[55] X. Shi, Z. Ye, N. Shiwakoti, and O. Grembek. A state-of-the-art review
on empirical data collection for external governed pedestrians complex
movement. Journal of Advanced Transportation, 2018, 2018.

[56] R. Sommer. Studies in personal space. Sociometry, 22(3):247–260, 1959.
[57] B. Steffen and A. Seyfried. Methods for measuring pedestrian density,

flow, speed and direction with minimal scatter. Physica A: Statistical
mechanics and its applications, 389(9):1902–1910, 2010.

[58] J. Sun, S. Lu, S. Lo, J. Ma, and Q. Xie. Moving characteristics of single
file passengers considering the effect of ship trim and heeling. Physica A:
Statistical Mechanics and its Applications, 490:476–487, 2018.

[59] J. Was, B. Gudowski, and P. J. Matuszyk. Social distances model of
pedestrian dynamics. In International Conference on Cellular Automata,
pp. 492–501. Springer, 2006.

[60] P. Willemsen, M. B. Colton, S. H. Creem-Regehr, and W. B. Thompson.
The effects of head-mounted display mechanics on distance judgments in
virtual environments. In Proceedings of the 1st Symposium on Applied
Perception in Graphics and Visualization, pp. 35–38, 2004.

[61] D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré.
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