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Abstract. Like most models used in model-checking, timed automata
are an idealized mathematical model used for representing systems with
strong timing requirements. In such mathematical models, properties can
be violated, due to unlikely (sequences of) events. We propose two new
semantics for the satisfaction of LTL formulas, one based on probabili-
ties, and the other one based on topology, to rule out these sequences.
We prove that the two semantics are equivalent and lead to a PSPACE-
Complete model-checking problem for LTL over finite executions.

1 Introduction

Timed automata, a model for verification. In the 90’s, Alur and Dill proposed
timed automata [3] as a model for verification purposes, which takes into account
real-time constraints. With this model, one can express constraints on (possibly
relative) dates of events. One of the fundamental properties of this model is
that, though there are infinitely many possible configurations in the system,
many verification problems can be solved (e.g. reachability and safety properties,
branching-time timed temporal properties). Since then, this model has been
intensively studied, and several verification tools have been developed.

Idealization of mathematical models. Timed automata are an idealized mathe-
matical model, in which several assumptions are implicitely made: it has infinite
precision, instantaneous events, etc. Several ideas have been explored to over-
come the fact that these hypotheses are in practice unrealistic. The model of
implementable controllers has been proposed, where constraints and precision
of clocks are somewhat relaxed [8]. In this framework, if the model satisfies a
safety property, then, on a simple model of processor, its implementation will
also satisfy this property. This implementation model has been considered in [15,
7, 4, 6]. However, it induces a very strong notion of robustness, suitable for really
critical systems (like rockets or X-by-wire systems in cars), but maybe too strong
for less critical systems (like mobile phones or network applications).
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Another robustness model has been proposed at the end of the 90’s in [9]
with the notion of tube acceptance: a metric is put on the set of traces of the
timed automaton, and a trace is robustly accepted if and only if a tube around
that trace is classically accepted. This acceptance has been further studied for
language-based properties, for instance the universality problem [11]. However,
this language-focused notion of acceptance is not completely satisfactory for
implementability issues, because it does not take into account the structure of
the automaton, and hence is not related to the most-likely behaviours of the
automaton.

Using probabilities to alleviate the disadvantages of mathematical models. In their
recent paper [17], Varacca and Völzer propose a probabilistic framework for
finite-state systems to overcome side-effects of modelling. They use probabilities
to define the notion of being fairly correct as having probability zero to fail,
when every non-deterministic choice has been transformed into a ‘reasonable’
probabilistic choice. Moreover, in their framework, a system is fairly correct with
respect to some property if and only if the set of traces satisfying that property
in the system is topologically large, which somehow attests the relevance of this
notion of fair correctness.

Contribution. We address both motivations, ruling out unlikely sequences of
transitions (as in the approach of [17]) and ruling out unlikely events (from
a time point of view, as in the implementability paradigm discussed above).
In order to do so, we propose two alternative semantics for timed automata:
(i) a probabilistic semantics which assigns probabilities both on delays and on
discrete choices, and (ii) a topological semantics, following ideas of [9, 11] but
rather based on the structure of the automaton than on its accepted language.
For both semantics, we can naturally address a model-checking problem for LTL:
almost-sure model-checking for the probabilistic case and large model-checking
for the topological case. Our results in these new frameworks are twofold. First
we prove, by means of Banach-Mazur games, that the two semantics coincide:
an LTL formula is almost-surely satisfied if and only if it is largely satisfied.
Second we show that the almost-sure model-checking problem (and hence the
large model-checking problem) for LTL specifications is PSPACE-Complete, i.e.,
no more expensive than the classical LTL model-checking problem.

About probabilistic timed systems. Probabilities are not new in the model-checking
community, and neither are timed systems. Several pieces of work even combine
both. We refer to [16] for a survey on probabilistic timed systems. However, all of
them were designed for modelling and analysing stochastic hybrid systems under
quantitative aspects, whereas we aim at a probabilistic interpretation of non-
probabilistic systems, which rule out unlikely events and yield a non-standard
but still purely qualitative satisfaction relation for linear-time properties. To the
best of our knowledge, we present here the first attempt to provide a proba-
bilistic interpretation for non probabilistic timed systems in order to establish
linear-time properties assuming ‘fairness’ on actions and delays.

Detailed proofs and complements can be found in the research report [5].
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2 Timed Automata and Region Automata

In this section, we recall the classical notions of timed automaton and its well-
known abstraction, the region automaton [3].

Timed automata. Let X be a finite set of clocks. A clock valuation over X is
a mapping ν : X → R+, where R+ is the set of nonnegative reals. We write RX

+

for the set of clock valuations over X. If ν ∈ RX
+ and τ ∈ R+, ν + τ is the clock

valuation defined by (ν + τ)(x) = ν(x) + τ if x ∈ X. If Y ⊆ X, the valuation
[Y ← 0]ν is the valuation assigning 0 to x ∈ Y and ν(x) to x 6∈ Y . A guard
over X is a finite conjunction of expressions of the form x ∼ c where x ∈ X,
c ∈ N, and ∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards over X.
The satisfaction relation for guards over clock valuations is defined in a natural
way, and we write ν |= g, if ν satisfies g. We denote AP a finite set of atomic
propositions.

Definition 1. A timed automaton is a tuple A = (L,X,E, I,L) such that: (i)
L is a finite set of locations, (ii) X is a finite set of clocks, (iii) E ⊆ L×G(X)×
2X × L is a finite set of edges, (iv) I : L → G(X) assigns an invariant to each
location, and (v) L : L→ 2AP is the labelling function.

The semantics of a timed automaton A is given by a labelled transition
system TA = (S,E ∪ R+,→) where the set S of states is {s = (`, ν) ∈ L× RX

+ |
ν |= I(`)}, and the transition relation → (⊆ S × (E ∪R+)× S) is composed of:

– (delay transition) (`, ν) τ−→ (`, ν + τ) if τ ∈ R+ and for all 0 ≤ τ ′ ≤ τ ,
ν + τ ′ |= I(`),

– (discrete transition) (`, ν) e−→ (`′, ν′) if e = (`, g, Y, `′) ∈ E is such that
ν |= I(`) ∧ g, ν′ = [Y ← 0]ν, and ν′ |= I(`′).

A finite run % of A is a finite sequence of states obtained by alternating delay and
discrete transitions, i.e., % = s0

τ1−→ s′1
e1−→ s1

τ2−→ s′2
e2−→ s2 · · · sn−1

τn−→ s′n
en−→ sn

or more compactly s0
τ1,e1−−−→ s1

τ2,e2−−−→ s2 · · · sn−1
τn,en−−−→ sn. We write Runs(A, s0)

for the set of finite runs of A from state s0.
Given s ∈ S and e an edge, we denote by I(s, e) = {τ ∈ R+ | s

τ,e−−→ s′}
and I(s) =

⋃
e I(s, e). The timed automaton A is said non-blocking whenever

for every state s ∈ S, I(s) 6= ∅.
If s is a state of A and (ei)1≤i≤n is a finite sequence of edges of A, if C is

a convex constraint over n real-valued variables (ti)1≤i≤n, the (symbolic) path
starting from s, determined by (ei)1≤i≤n, and constrained by C, is the following
set of runs:

πC(s, e1 . . . en) = {% = s
τ1,e1−−−→ s1

τ2,e2−−−→ s2 · · · | % ∈ Runs(A, s) and (τi)1≤i≤n |= C 4} .

If C is equivalent to ‘true’, we write π(s, e1 . . . en), and say it is unconstrained.
Occasionally, we refer to symbolic path for unconstrained symbolic path.
4 We write (τi)1≤i≤n |= C whenever the system C[ti/τi], obtained by replacing each

variable ti in C by the value τi, is true.
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The region automaton abstraction. The well-known region automaton con-
struction is a finite abstraction of timed automata which can be used for verifying
many properties, for instance regular untimed properties [3]. Roughly, the region
automaton of A is the quotient of TA by an equivalence relation over clock valu-
ations. For lack of space, we do not redefine the region equivalence relation, and
we write RA for the set of regions of automaton A. In this paper, we will use a
slight modification of the original construction, which is still a timed automaton,
but which satisfies very strong properties.

Definition 2. Let A = (L,X,E, I,L) be a timed automaton. The region au-
tomaton of A is the timed automaton R(A) = (Q,X, T, κ, λ) such that:

– Q = L×RA; – κ((`, r)) = I(`), and λ((`, r)) = L(`) for all (`, r) ∈ L×RA;

– T ⊆ (Q×cell(RA)×E×2X×Q), and (`, r)
cell(r′′),e,Y−−−−−−−→ (`′, r′) is in T iff there

exists e = `
g,Y−−→ `′ in E s.t. there exist ν ∈ r, τ ∈ R+ with (`, ν)

τ,e−−→ (`′, ν′),
ν + τ ∈ r′′ and ν′ ∈ r′ (cell(r′′) is the smallest guard containing r′′).

We recover the usual region automaton of [3] by labelling the transitions ‘e’ in-
stead of ‘cell(r′′), e, Y ’, and by interpreting R(A) as a finite automaton. However,
the above timed interpretation satisfies strong timed bisimulation properties that
we do not detail here. To every finite path π((`, ν), e1 . . . en) in A corresponds
a finite set of paths π(((`, [ν]), ν), f1 . . . fn) in R(A), each one corresponding to
a choice in the regions that are crossed. If % is a run in A, we write ι(%) for its
(unique) image in R(A). Finally, note that if A is non-blocking, then so is R(A).

In the rest of the paper we assume timed automata are non-blocking, even
though general timed automata could also be handled (but at a technical extra
cost). In all examples, if a state has no outgoing transition, we implicitely add
a self-loop on that state with no constraints, so that the automaton is non-
blocking.

3 A Probabilistic Semantics for Timed Automata

In the literature, several models gather probabilities and timed constraints (see [16]
for a survey). Here, we take the model of timed automata, and give a probabilistic
interpretation to delays, so that unlikely events will happen with probability 0.

For the rest of this section, we fix a timed automaton A = (L,X,Σ,E, I,L),
which we assume is non-blocking. For every state s of A, we assume a probability
measure µs over R+ with the following requirements: (i) µs(I(s)) = µs(R+) = 1;5

(ii) Writing λ for the Lebesgue measure, if λ(I(s)) > 0, µs is equivalent6 to λ on
I(s); Otherwise, µs is equivalent on I(s) to the uniform distribution over points
of I(s). For every state s of A, we also assume a probability distribution ps over
edges, such that for every edge e, ps(e) > 0 iff e enabled in s (i.e., s e−→ s′ for
some s′).
5 Note that this is possible, as we assume s is non-blocking, hence I(s) 6= ∅.
6 Two measures ν and ν′ are equivalent whenever for each measurable set A, ν(A) =

0 ⇔ ν′(A) = 0.
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Remark 3. The above constraints on probability measures are rather loose and
are for instance satisfied by: (i) the uniform discrete distribution over I(s) if
I(s) is a finite set of points, (ii) the Lebesgue measure over I(s), normalized to
have a probability measure, if I(s) is a finite set of bounded intervals, and (iii)
an exponential distribution if I(s) contains an unbounded interval.

3.1 Definition of a Probability Measure over Finite Paths

Definition 4. Let A be a timed automaton. We define inductively the probability
for an unconstrained symbolic path π(s, e1 . . . en) to be fired (or equivalently for
the sequence e1, . . . , en of transitions in A to be fired from s) as follows:

PA(π(s, e1 . . . en)) =
1
2

∫
t∈I(s,e1)

ps+t(e1) PA(π(st, e2 . . . en)) dµs(t)

where s t−→ (s+ t) e1−→ st. We initialize with PA(π(s)) = 1
2 .

Using Fubini’s theorem, by induction on the length of symbolic paths, we can
prove that PA is well-defined. When clear from the context, we omit subscript A.

The formula for PA can be read as follows: the probability of taking transition
e1 at time t coincides with the probability of waiting t time units and then choose
e1 among the enabled transitions, i.e., ps+t(e1)dµs(t). We need to sum up over
all t’s in I(s, e1) the probability of runs starting by such a move. Normalisation
factor 1

2 ensures that the probability of all finite runs be one.7

Let us illustrate the previous definition on an example.

Example 5. Consider the following timed automaton:

`0 `1 `2`3

`4

x≤1, e1x≤2 x≤2, e2

x≤5

We assume a uniform distribution over delays and enabled edges in every state.
Then we can compute that P(π((`0, 0), e1e2)) = 1

64

(
1− 3 log

(
5
4

) )
as µ(`0,0) = λ

2

(resp. µ(`1,t) = λ
5−t ) is the uniform distribution over [0, 2] (resp. [t, 5]).

Lemma 6. For every state s, PA is a probability measure over the set Runs(A, s).

We establish that probabilities in A and in R(A) are closely related, provided
the measures we initially assign to A and R(A) are similar. Hence, if µA (resp.
µR(A)) is the measure in A (resp. R(A)), we assume that for every state s in A,
µAs = µ

R(A)
ι(s) .8 This is possible as one can easily be convinced that I(s) = I(ι(s)).

Similarly, if pA (resp. pR(A)) is the distribution over edges in A (resp. R(A)), we
assume that for every state s in A, for every t ∈ R+ pAs+t = p

R(A)
ι(s)+t. Under those

assumptions, we have the following result.
7 Without this factor, for all n, the measure of runs of length n is one. This factor

is not completely satisfactory as it has no ‘physical’ interpretation, but it is not a
problem as we are only interested in qualitative properties.

8 Note that we abuse notations and use ι(s) for ι(π(s)).
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Lemma 7. Let A be a non-blocking timed automaton. Assume measures in A
and in R(A) are related as described above. Let π be a symbolic path in A. Then,
ι(π)9 is a PR(A)-measurable set of runs in R(A), and PA(π) = PR(A)(ι(π)).

3.2 Probabilistic Semantics

We consider the logic LTL [14], defined inductively as:

LTL 3 ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ϕUϕ

where p ∈ AP is an atomic proposition. We use classical shorthands like tt
def=

p∨¬p, ff def= p∧¬p, ϕ1 ⇒ ϕ2
def= ¬ϕ1 ∨ϕ2, Fϕ def= ttUϕ, and Gϕ

def= ¬F (¬ϕ).
We interpret LTL formulas over finite runs of a timed automaton. Given a

symbolic path π and an LTL formula ϕ, either all concretizations of π (i.e.,
concrete runs % ∈ π) satisfy ϕ, or they all do not satisfy ϕ. Hence, it is correct
to speak of the probability PA{% ∈ Runs(A, s0) | % |= ϕ}, which we simply write
PA(s0, ϕ).

Let ϕ be an LTL formula. We say that A almost-surely satisfies ϕ from s0
w.r.t. PA, and we then write A, s0 |≈P ϕ, if PA(s0, ϕ) = 1.

Remark 8. Our model of timed automata has no accepting locations. This is
restrictive as some formulas will be trivially wrong (for instance, eventualities).
However, we can deal with accepting locations as well. Let acc be a new atomic
proposition and ψ be an LTL formula characterising the accepting runs, i.e.,
ψ

def= FG acc. Instead of considering PA(s0, ϕ) we would rather evaluate the
conditional probability PA(s0, ϕ | ψ). Clearly enough, verifying that PA(s0, ϕ |
ψ) = 1 in the automaton without accepting locations corresponds to checking
PA(s0, ϕ) = 1 in the automaton where accepting locations are those labelled with
acc. Note that this only makes sense if PA(s0, ψ) 6= 0, however timed automata
such that PA(s0, ψ) = 0 can be considered as degenerated.

Example 9. Consider the timed automaton A depicted below:

`0

x≤1

{p1}

`1

{p1}

`2

{p2}e1, x≤1

e2, x≥2
x:=0

e3, x=3
e4, x≥1

If s0 = (`0, 0) is the initial state, then A, s0 6|= G p1 but A, s0 |≈P G p1. Indeed,
in this example, the transition e3 will unlikely happen, because its guard x = 3
is much too ‘small’ compared with the guard x ≥ 2 of the transition e2.

Lemma 7 directly implies the following:

Corollary 10. Let A be a non-blocking timed automaton, s a state of A, and
ϕ an LTL formula. Then,

A, s |≈P ϕ ⇔ R(A), ι(s) |≈P ϕ .

9 Recall that, if % is a run in A, then ι(%) is the image of % in R(A) (see page 4).
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4 A Topological Semantics for Timed Automata

In this section, we propose a large semantics for LTL over timed automata. This
large semantics, based on a natural topology on timed automata, asserts that an
LTL formula is largely satisfied if ‘most of the runs’ satisfy it. We use classical
topological tools (including the dimension) to characterise what we mean by
‘most of the runs’.

4.1 Some Topological Notions

We do not recall classical definitions in topology but refer to [12]. However,
some notions are less common, we thus recall them here. The density notion
is not appropriate to express a ‘most of the runs’ notion, because rather small
sets are dense, e.g. the set Q in R. As already pointed out in [17] the notion of
largeness, and its complement the meagerness are more appropriate. Let (A, T )
be a topological space. If B ⊆ A, we denote by B̊ (resp. B) the interior (resp.
closure) of B. A set B ⊆ A is nowhere dense if B̊ = ∅. A set is meager if it is a
countable union of nowhere dense sets. Finally, a set is large if its complement
is meager.

Although the notion of largeness is quite abstract, it admits a very nice
characterisation in terms of a two-player game, known as Banach-Mazur game.
A Banach-Mazur game is based on a topological space (A, T ) equipped with a
family B of subsets of A such that: (1) ∀B ∈ B, B̊ 6= ∅ and (2) ∀O ∈ T s.t. O 6=
∅, ∃B ∈ B, B ⊆ O. Given C a subset of A, players alternate their moves choosing
decreasing elements in B, and build an infinite sequence B1 ⊇ B2 ⊇ B3 · · · .
Player 1 wins the play if

⋂∞
i=1Bi ∩ C 6= ∅, else Player 2 wins.

Banach-Mazur games are not always determined, even for simple topological
spaces (see [13, Remark 1]). Still a natural question is to know when the players
have winning strategies. The following result gives a partial answer:

Theorem 11 (Banach-Mazur [13]). Player 2 has a winning strategy in the
Banach-Mazur game with target set C if and only if C is meager.

4.2 The Dimension of a Symbolic Path

In Rn, open sets are among those sets of maximal dimension. Here, we are not
exactly in Rn, but each symbolic constrained path can be embedded in some Rm.
A notion of dimension of a symbolic path then naturally arises. Before going to
the details, let us explain through an example the intuition behind this notion.

Example 12. Let A be the timed automaton depicted below, let s0 be the state
(`0, 0) and π be the (unconstrained) symbolic path π(s0, e1e2).

`0 `1 `2

`3

x≤2, e1 x≤5, e2

x=3, e3
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One can naturally associate a polyhedron of (R+)2 with π:

Pol(π) = {(τ1, τ2) ∈ (R+)2 | % = s0
τ1,e1−−−→ s1

τ2,e2−−−→ s2 ∈ Runs(A, s0)}
= {(τ1, τ2) ∈ (R+)2 | (0 ≤ τ1 ≤ 2) ∧ (0 ≤ τ1 + τ2 ≤ 5)}

Pol(π) has dimension 2 in R2. Since it is of maximal dimension, we say the
dimension of the symbolic path π is defined. Consider now the symbolic path
π′ = π(s0, e1e3). The polyhedron Pol(π′) associated with π′ has dimension 1, and
is embedded in a two-dimensional space. In that case, we say that its dimension
is undefined.

In general, we need to be careful with singular transitions, i.e., transitions
which do not increase the dimension but play an important role (in the previous
example, it would be the case if the edge e1 was labelled with the guard x = 2;
though this guard is very small, the role of edge e1 is essential in the behaviour
of the automaton).

Let πC = πC(s, e1 . . . en) be a constrained path of a timed automaton A. We
define its associated polyhedron as follows:

Pol(πC) = {(τi)1≤i≤n ∈ (R+)n | s τ1,e1−−−→ s1 · · ·
τn,en−−−→ sn ∈ πC(s, e1 . . . en)} .

Definition 13. Let A be a timed automaton, and πC = πC(s, e1 . . . en) a con-
strained path. For each 0 ≤ i ≤ n, we write Ci for the projection of Pol(πC) over
the variables of the i first coordinates, with the convention that C0 is true. We
say that the dimension of πC is undefined, and we then write dimA(πC) = ⊥,
whenever there exists some index 1 ≤ i ≤ n such that

dim
(
Pol

(
πCi(s, e1 . . . ei)

))
< dim

( ⋃
e

Pol
(
πCi−1(s, e1 . . . ei−1e)

))
.

Otherwise we say that the dimension of πC is defined, and write dimA(πC) = >.

4.3 Definition of a Topology over Finite Paths

For A a timed automaton, and s a state of A, we define a basic open set as a
constrained symbolic path πC = πC(s, e1 . . . en) such that dimA(πC) is defined,
and Pol(πC) is open in Pol(π) for the topology of Rn induced on Pol(π), where
π stands for the (unconstrained) path π(s, e1 . . . en).

We write TA for the topology over Runs(A, s) induced by these basic open
sets and Runs(A, s). Note that the basic open sets πC together with Runs(A, s)
form a base for TA.

Example 14. Let A be the timed automaton of Example 9 and s0 = (`0, 0) be its
initial state. The basic (unconstrained) open sets of Runs(A, s0) are sets of the
form π(s0, (e1e2)∗) or of the form π(s0, e1(e2e1)∗). A (constrained) basic open
set is then for instance πC(s0, e1e2) with C = { 1

3 < t1 <
1
2 ; t1 + t2 > 5}. One can

be convinced that the set of paths of the form π(s0, (e1e2)∗e3e∗4) is meager.
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Proposition 15. Let A be a timed automaton, and s a state of A. The topo-
logical space (Runs(A, s), TA) is a Baire space.10

Proof (Sketch). Let πC = πC(s, e1 . . . en) be a non-empty basic open set. We then
use Banach-Mazur games and Theorem 11 to prove that πC is not meager: we
prove that Player 2 has no winning strategy for the game playing with basic open
sets and with πC as an objective, by exhibiting a counter-strategy for Player 1.

Player 1 proceeds as follows: for the first round, she picks π1 = πC . For the
second round, Player 2 picks some π2 ⊆ π1. For the third round, Player 1 must be
careful and cannot take an arbitrary open path included in π2, because Player 1
could manage to choose the constraints so that the limit of the intersections
be empty (by analogy in R, the limit of (0, 1

2i ) is the empty set). To avoid this,
Player 1 can first consider a ‘big’ compact set F2 within π2 (‘big’ here means with
a non-empty interior) — note that this is possible as the topology we consider,
restricted to π(s, e1 . . . en), can be embedded in some Rm through the application
Pol(·). Then, she can play with a basic open set π3 included in F2. The game
continues like this, and Player 1 only needs to use the above-described trick at
each of her rounds. The intersection of all paths that have been played then
corresponds to the intersection of a chain of compact sets, hence it is non-empty,
by Heine-Borel theorem. ut

We can now define a topological semantics for LTL based on the notion of
largeness. Let ϕ be an LTL formula. We say that A largely satisfies ϕ from s,
and we write A, s |≈T ϕ, if the set {% ∈ Runs(A, s) | % |= ϕ} is topologically
large. The topologies in A and in R(A) are equivalent in the following sense.

Lemma 16. Let ι : Runs(A, s) → Runs(R(A), ι(s)) be the projection of finite
runs % in A onto the region automaton (see page 4). Then ι is continuous, and

for every non-empty open set O ∈ TA,
◦

ι(O)6= ∅.

Corollary 17. Let A be a timed automaton, s a state of A, and ϕ an LTL
formula. Then,

A, s |≈T ϕ ⇔ R(A), ι(s) |≈T ϕ .

5 Correspondence of the Two Semantics

In this section we prove our main theorem: probabilistic and topological seman-
tics coincide! We first relate dimension and probabilities in the region automaton.

Proposition 18. Let A be a non-blocking timed automaton, and π be an un-
constrained symbolic path in R(A). Then, PR(A)(π) > 0 iff dimR(A)(π) = >.11

10 In modern definitions, a topological space is a Baire space if each countable union
of closed sets with an empty interior has an empty interior. However, originally, a
topological space is a Baire space whenever every non-empty open set is not meager.
The two definitions coincide, see [12, p.295].

11 This is in particular independent of the choice of the probability distributions over
delays.
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The main result of this paper is the following theorem.

Theorem 19. Let A be a non-blocking timed automaton, s a state of A, and ϕ
an LTL formula. Then,

A, s |≈P ϕ ⇔ A, s |≈T ϕ .

Proof (Sketch). Thanks to Corollaries 10 and 17, it is equivalent to prove that
R(A), ι(s) |≈T ϕ iff R(A), ι(s) |≈P ϕ. Moreover, R(A), ι(s) |≈P ϕ iff PA(ι(s),¬ϕ) =
0, thus applying Proposition 18, R(A), ι(s) |≈P ϕ iff every symbolic path π in
R(A) starting in ι(s) and satisfying ¬ϕ has an undefined dimension. We finally
prove that this last property is equivalent to R(A), ι(s) |≈T ϕ, i.e., to the fact
that J¬ϕK = {% ∈ Runs(R(A), ι(s)) | % 6|= ϕ} is topologically meager.

For the first implication, we use Banach-Mazur games and Theorem 11 to
prove that Player 2 has a winning strategy for the objective J¬ϕK (still playing
with the basic open sets of TR(A)). Let π1 be the path chosen by Player 1 at the
first round. This path has necesseraly defined dimension and thus, by hypothesis
and Proposition 18, it satisfies ϕ. Whatever is played afterwards, the intersection
with the objective will be empty. Hence Player 2 wins and J¬ϕK is meager.

For the second implication, assume that J¬ϕK is meager. As the topological

space (Runs(R(A), ι(s)), TR(A)) is a Baire space (see Proposition 15),
◦

J¬ϕK= ∅.
Hence, there is no path in R(A) from ι(s) with defined dimension which does
not satisfy ϕ. ut

Remark 20. To handle accepting states in the previous theorem, it would be
sufficient to quantify only over paths in R(A) which are accepting.

6 Decidability Issues

Theorem 21. Over finite timed words, the almost-sure and the large LTL model-
checking problems over non-blocking timed automata are PSPACE-Complete.

Proof (Sketch). The two problems are equivalent, due to Theorem 19. The
PSPACE-Hardness follows from the PSPACE-Hardness of LTL model checking
over finite automata. To describe a PSPACE algorithm, we first color each edge of
R(A) as follows: if e is an edge in R(A), we color it in red whenever µs(I(s, e)) = 0
for some s ∈ q (note that this property is independent of the choice of s ∈ q,
and that it is equivalent to dim(I(s, e)) < dim(I(s)) thanks to the property of
the measure µs, see page 4), and we color it in blue otherwise.

Lemma 22. Let A be a timed automaton and π = π(s, e1 . . . en) a symbolic path
in R(A). Then, dimR(A)(π) = ⊥ iff at least one of the edges of π is red.

Now, applying Proposition 18, to decide whether A, s 6|≈P ϕ, it is sufficient to
guess a path in R(A) which has defined dimension (i.e., does not contain any
red edge), and does not satisfy ϕ. There is such a path with length at most
exponential, it can thus be done in NPSPACE =PSPACE. ut
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7 Related Work

In this section we briefly compare our two semantics with existing works. A
deeper related work section can be found in our research report [5].

The model of real-time probabilistic processes introduced in [1, 2] seems sim-
ilar to timed automata interpreted with our probabilistic semantics, but it is
indeed not the case. First, such a system is composed of a number of indepen-
dent processes with a single clock, which implies in particular that clocks are
completely independent. Then, and this is even more important, the choice of
the transition to be taken is made before choosing probabilistically a delay. As
a consequence, even transitions with small firing intervals can have a high prob-
ability to be taken, even though events with much larger firing intervals are
possible. This is why this model satisfies stronger properties than ours.

We now compare our topology with the one introduced in [9] and further
studied in [11]. First notice that their topology is defined on finite timed words
and we define our topology on the set of finite runs. In particular, as already
mentioned in the introduction, their topology only depends on the language and
not on the automaton, while ours does. This implies that the topologies are
‘incomparable’, more precisely we can find sets that are open for our topology
and not for their topology, and vice-versa.

8 Conclusion

In this paper, we have proposed two satisfaction relations for LTL formulas over
timed automata which rule out unlikely (sequences of) events. The first one is
based on a probabilistic semantics of timed automata, and to the best of our
knowledge, is the first attempt to provide a probabilistic interpretation for non
probabilistic timed systems in order to establish linear-time properties assuming
‘fairness’ on actions and delays. It naturally raises (qualitative) model-checking
questions, for instance whether the probability that an LTL property holds is 1
(almost-sure model-checking problem). The second one is based on the topolog-
ical concept of largeness, and yields a natural large semantics for LTL. We prove
that these two interpretations for LTL coincide. Moreover, we establish that LTL
model checking under those non-standard semantics is not harder than ordinary
LTL model-checking (PSPACE-Complete).

The method we have developed here could straightforwardly extend in various
directions. All untimed properties over finite runs, whose truth is invariant by
regions, can be treated that way (for instance properties expressed in the logic
CTL? or in the µ-Calculus). It could also be applied to various classes of hybrid
systems with a finite bisimulation quotient [10].

We are currently extending this work to the framework of infinite timed words
which raises even more complex problems, and we plan to extend it further in
several directions, like for properties expressed in a timed logic, or to the quanti-
tative analysis of this model (for instance, computing the exact, or approximate,
probability of satisfying a given property, etc), or to control problems, etc.
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