
An Optimization Playground for
Precision and Number
Representation Tuning

Olivier Sentieys
Univ. Rennes, Inria

with Van-Phu Ha, Tomofumi Yuki, Daniel Ménard and others

2

Computer Arithmetic

• At the core of computing we find number
representations (e.g., real) and arithmetic
operations (e.g., +, ×, ÷, √)

• Numeric formats
– Fixed-Point (integer)
– Floating-Point

• Energy, delay, and area vary a lot between
numeric formats and word-length

2-n2-121 202m-1

Integer part: m bits Fractional part: n bits

S bm-1bm-2 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

Addition Multiplication

8-bit integer 0.03pJ / 36µm2 0.2pJ / 282µm2

32-bit float 0.9pJ / 4184µm2 3.7pJ / 7700µm2

Exponent: E bits Mantissa: M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

Automatic Precision Tuning
[also Word-Length Optimization (WLO)]

• Optimization process that
– determines the number of bits for each data
– minimizing a cost function C
– constrained by (application) quality degradation l
• e.g., noise power, SSIM, abs. error

Quality
DegradationSpeed

Power
Area

C(•) �(•)

4

Multiple Word Length

Automatic Precision Tuning

1 1 1 0 1 1 1 0 1 0 0 1 0 1 1

1 0 1 0 1 0 1 1 1 0 1 1 0 1 1

1 0 1 0 0 1 1 0 1 0 1 1 1 1 0

1 0 1 1 1 1 1 1 0 0 1 1 0 0 1

1 1 1 1 0 1 0 0 1 1 1 1 0 0 1

Fractional Word LengthInteger Word Length

x0

x1
x2

xk

xN-1

… …

… …

…

…

Variable

Uniform Word Length

0

1

1

1

1

w0

w1

w2

wk

wN-1

…

…

O(BN)

N: number of variables
B: number of bits to explore per variable

5

Automatic Precision Tuning

• Multi-variable word-length optimization

• Known to be non-convex and NP-hard
• Optimized using heuristic rules,

iterative optimization process,
stochastic approaches

min (C(w)) subject to �(w) �obj

l(
W

)

Iterations

MinWL

�obj

𝜆(𝒘): accuracy degradation of solution 𝒘
𝐶(𝒘): cost of solution 𝒘
Data word lengths: 𝒘={𝑤0,𝑤1,…,𝑤𝑁−1}
Maximum degradation: 𝜆obj

6

Speeding-up Global Search

• Combine Bayesian Optimization
and Local Search
– Bayesian Optimization for

narrowing down solution space
– Fine-tuning with local search

• Transition point based on
statistical metrics
– word-lengths (WL) are

distributed with low variance
• e.g., with less than 1 bit

• Optimization time is reduced by
50-80% w.r.t. best algorithm
with similar cost

speed-up

[DATE’21]

7

Scaling the WLO Procedure

• Large system sizes present enormous complexity
– Too many variables for global optimization

Multi-kernel approach

• Key idea: construct models that express
– impact of noise budgets to Cost and Accuracy
– relation among noise budgets

• Significantly reduce exploration time and improve the
quality of the solutions for large applications

In Kernel #1 OutKernel #3Kernel #2

𝜆" 𝜆# 𝜆$ 𝜆%

[DATE’20]

8

Accuracy Evaluation

• One of the most time consuming tasks during
precision tuning

• Models for quantization effect analysis
– Analytical accuracy evaluation
– System-level estimation [ICCAD’14, DATE’16]

– Speeding-up simulations [DATE’20, ICCAD’14]

Noise source
model

Noise
propagation

model

System-level
model

Word-length

Widrow model Perturbation theory Single noise source

Source noise
moments

Output noise
moments

Application
quality

𝜆(𝒘)
Accuracy evaluation

𝒘

9

TypEx: A Framework for Type Exploration

• Source-to-source
– C code in float to C

code using custom
arithmetic

• Word-length
optimisation
– fixed or float

Application
Description

C Code (float)+pragmas

Cost
model Type

Exploration

Fixed-Point
Floating-Point

Accuracy
constraint

C++ Code
Customized Arithmetic

MSE
PSNR
SSIM

TypEx

10

Custom Floating-Point

• Slower increase of errors for
floating-point
– e.g., 8-bit float is still effective for

K-means clustering

• Difference in cost/energy
between float/fixed is small for
low-precision operators

Floating-Point: ct_float8
5-bit exponent
3-bit mantissa

Reference: double

Approximate K-Means Clustering

FloatFixed

Fixed/Float multipliers

[SiPS’17]

11

Custom Floating-Point

• ct_float: a Custom Floating-Point
C++ Library
– Synthesizable (with HLS) library
– Templated C++ class

ct_float<e,m,r>
• Exponent width 𝑒 (int)
• Mantissa width 𝑚 (int)
• Rounding method 𝑟
• Bias 𝑏

• Many possible design points
– latency constraints, rounding modes, etc.

ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;

https://gitlab.inria.fr/sentieys/ctfloat

12

Work in Progress

• Low-Precision Training of DNNs

– Explore mixed numerical precision hardware
– Low-precision floating-point, variable-precision

variants, building the accelerator

training one huge NLP model emits the same amount
of CO2 as five cars in their lifetimes (fuel included)

VGG16 training with Cifar-10

13

Open Issues

• WLO is still a difficult problem for large
applications
– Mainly limited by simulation time to evaluate 𝜆(𝒘),

analytical evaluation still limited
• Evaluating cost 𝐶(𝒘) is also an important (and less

studied) issue
– Resource sharing, complexity related to one wi

• Automatizing the choice between (or combining)
float and fixed is a challenge
– Towards an automatic optimizing compiler framework

• considering both float and fixed representations
• combining WL/Number Representation optim.

14

More Open Issues

• Compiler level: identify candidate
computation kernels for approximations

• Hardware-level: build a precision-
reconfigurable acceleration platform,
especially suitable for training ML/DL

• Algorithmic-level: build analytical (maths)
models of accuracy loss in DNN to avoid
long simulations

