An Optimization Playground for Precision and Number Representation Tuning

Olivier Sentieys Univ. Rennes, Inria

with Van-Phu Ha, Tomofumi Yuki, Daniel Ménard and others

Computer Arithmetic

- At the core of computing we find number representations (e.g., real) and arithmetic operations (e.g., +, ×, ÷, √)
- Numeric formats
 - Fixed-Point (integer)
 - Floating-Point

 Energy, delay, and area vary a lot between numeric formats and word-length

	Addition	Multiplication
8-bit integer	0.03pJ / 36µm²	0.2pJ / 282µm²
32-bit float	0.9pJ / 4184µm²	3.7pJ / 7700µm²

Automatic Precision Tuning

[also Word-Length Optimization (WLO)]

- Optimization process that
 - determines the number of bits for each data
 - minimizing a cost function C
 - constrained by (application) quality degradation λ
 - e.g., noise power, SSIM, abs. error

Automatic Precision Tuning

Minifopha Word Length

N: number of variables B: number of bits to explore per variable

Automatic Precision Tuning

Multi-variable word-length optimization

min $(C(\mathbf{w}))$ subject to $\lambda(\mathbf{w}) \leq \lambda_{obj}$

- Known to be non-convex and NP-hard
- Optimized using heuristic rules, iterative optimization process, stochastic approaches

 $\lambda(w)$: accuracy degradation of solution wC(w): cost of solution wData word lengths: $w = \{w_0, w_1, ..., w_{N-1}\}$ Maximum degradation: λ_{obj}

Speeding-up Global Search

- Combine Bayesian Optimization and Local Search
 - Bayesian Optimization for narrowing down solution space
 - Fine-tuning with local search
- Transition point based on statistical metrics
 - word-lengths (WL) are distributed with low variance
 - e.g., with less than 1 bit
- Optimization time is reduced by 50-80% w.r.t. best algorithm with similar cost

IIR (33 variables)

Scaling the WLO Procedure

- Large system sizes present enormous complexity
 - Too many variables for global optimization

- Key idea: construct models that express
 - impact of noise budgets to Cost and Accuracy
 - relation among noise budgets
- Significantly reduce exploration time and improve the quality of the solutions for large applications

[DATE'20]

Accuracy Evaluation

- One of the most time consuming tasks during precision tuning
- Models for quantization effect analysis
 - Analytical accuracy evaluation
 - System-level estimation [ICCAD'14, DATE'16]
 - Speeding-up simulations [DATE'20, ICCAD'14]

TypEx: A Framework for Type Exploration

- Source-to-source
 - C code in float to C code using custom arithmetic
- Word-length optimisation
 - fixed or float

Custom Floating-Point

- Slower increase of errors for floating-point
 - e.g., 8-bit float is still effective for K-means clustering [SiPS'17]
- Difference in cost/energy between float/fixed is small for low-precision operators

Approximate K-Means Clustering

Custom Floating-Point

- ct_float: a Custom Floating-Point C++ Library https://gitlab.inria.fr/sentieys/ctfloat
 - Synthesizable (with HLS) library
 - Templated C++ class
 - ct_float<*e*,*m*,*r*>
 - Exponent width e (int)
 - Mantissa width *m* (int)
 - Rounding method r
 - Bias b
- Many possible design points
 - latency constraints, rounding modes, etc.

```
ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;
```

Work in Progress

Low-Precision Training of DNNs

Open Issues

- WLO is still a difficult problem for large applications
 - Mainly limited by simulation time to evaluate $\lambda(w)$, analytical evaluation still limited
- Evaluating cost C(w) is also an important (and less studied) issue
 - Resource sharing, complexity related to one w_i
- Automatizing the choice between (or combining) float and fixed is a challenge
 - Towards an automatic optimizing compiler framework
 - considering both float and fixed representations
 - combining WL/Number Representation optim.

More Open Issues

- Compiler level: identify candidate computation kernels for approximations
- Hardware-level: build a precisionreconfigurable acceleration platform, especially suitable for training ML/DL
- Algorithmic-level: build analytical (maths) models of accuracy loss in DNN to avoid long simulations