
An Optimization Playground for
Precision and Number
Representation Tuning
The case of Approximate Deep Learning Accelerators

Olivier Sentieys
Univ. Rennes, Inria

2

Energy Cost in a Processor/SoC

28nm
CMOS

16 nJ
DRAM
Rd/Wr

• 64-bit FPU: 20pJ/op
• 32-bit addition: 0.05pJ
• 16-bit multiply: 0.25pJ

• Wire energy
– 240fJ/bit/mm per ⇵
– 32 bits: 40pJ/word/mm
– 8 bits: 10pJ/word/mm

50 pJ (8 kB SRAM)

• Memory/Register-File
– Depends on word-length

[Adapted from Dally, IPDPS’11]

Energy strongly depends on data representation and size

3

Complexity Issues of Deep NNs
• Deep (Convolutional) Neural Networks

ResNet-50
training batch=4

Poplar® graphs have many
more vertices than
TensorFlow graphs – typically
millions, to load-balance a
machine executing tens of
thousands of codelets in
parallel.

The TensorFlow IPU backend
uses the Poplar® libraries to
break TensorFlow compute
functions and large tensors
into fragments.

ResNet-50
training batch=4

Poplar® graphs have many
more vertices than
TensorFlow graphs – typically
millions, to load-balance a
machine executing tens of
thousands of codelets in
parallel.

The TensorFlow IPU backend
uses the Poplar® libraries to
break TensorFlow compute
functions and large tensors
into fragments.

4

Even Worse for Training…

• Carbon footprint of DNN training

• Many more operations than inference
• More pressure on memory access
• Much more difficult to accelerate

Analyzing the carbon footprint of current natural-language
processing models shows an alarming trend: training one
huge model for machine translation emits the same
amount of CO2 as five cars in their lifetimes (fuel included)

Need for a Significant Reduction of the Carbon
Footprint of Neural Network Training Hardware

[Strubell et al., ACL 2019]

5

Approximate Computing

• Many applications are error resilient
– media processing, data mining, machine

learning, web search, etc.
• AxC performs approximations to reduce energy

and increase execution speed while keeping
accuracy in acceptable limits
– Relaxing the need for fully precise operations
– Number representations

and word-length

• Design-time/run-time
• Different levels

Application quality degradation

Co
st

X

X

X
X

X

6

Resilience of NNs?

• Our biological neurons are tolerant to computing
errors and noisy inputs

• Quantization of parameters and computations
provides benefits in throughput, energy, storage

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoatnt tihng
is taht the frist and lsat ltteer be at the rghit
pclae. And we spnet hlaf our lfie larennig
how to splel wrods. Amzanig, no!

[O. Temam, ISCA10]

7

This rest of this talk is about

• Reducing the numerical precision of
arithmetic operations is a general way to
increase performance and energy
efficiency in computing
– How does this apply to DNNs?
– Can we design low-precision accelerators for

inference and training?
– Can we do this precision tuning

automatically?

8

Number Representations

• Floating-Point (FlP)

s: sign, m: mantissa, e: exponent

– Easy to use
– High dynamic range
– IEEE 754

• Fixed-Point (FxP)

p: integer, K=2-n: fixed scale factor

– Integer arithmetic
– Efficient operators
• Speed, power, cost

– Hard to use...

8

x = p⇥K

2-n2-121 202m-1

Integer part: m bits Fractional part: n bits

S bm-1bm-2 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

Exponent: E bits Mantissa: M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

Format e m bias

Single Precision 8 23 127

Double Precision 11 52 1023

9

Number Representations

• Energy, delay, and area vary a lot between
numeric formats and word-length

Addition Multiplication

8-bit integer 0.03pJ / 36µm2 0.2pJ / 282µm2

32-bit float 0.9pJ / 4184µm2 3.7pJ / 7700µm2

Computer arithmetic
I at the core of computing we find number representations (integer

and real) + basic arithmetic operations (e.g. +, ◊, ÷, Ô
)

I energy consumption varies a lot between numeric formats

Task: optimize number format and values for target application accuracy

5/13

10

Floating-Point Arithmetic

• Floating-point
hardware is doing the
job for you!

• FlP operators are
therefore more
complex

[J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009]

292 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

�

LZA correction

LZA

shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

p + 1

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex � ey

close path c/f

ex

ez

my

shift

|mx � my|

my

1-bit shift

ex

ez

mx

far path

sticky

prenorm (2-bit shift)
s

s
0

s
0 = 0

g r

mz

mz

Figure 9.13: A dual-path floating-point adder with LZA.

Fixed-point addition
equivalent

FlP Adder

11

What can be customized?

• Of course precision
– Exponent (E) and Mantissa (M) bit-width
– e and m both impact accuracy

• Play with exponent bias
• Sub-normal numbers or not?
• 0, ∞, NaN?
• Rounding modes
– to nearest, truncation, to 0/∞

• Inexact integer operators

12

LP-Floating-Point Multiplication

• Example: 7 bits, (2,5)

• 5-bit adder and 3 gates!

Sx 1 0/1ex 1.mx = {1.0; 1.5}

X Sy 1ey 1.my = {1.0; 1.5}0/1

ez = ex + ey + (mx AND my)
1.mz = {1.0; 1.5; 2.25}

1

1.mz = {1.0; 1.5; 1.5 or 1.0}

mz = mx OR/XOR mySz

sz = sx NXOR sy

13

FxP vs. FlP: Adders

• FxPN
– N-bit Fixed-Point

• FlTN(E)
– N-bit Float
– Exponent E bits

• FxP adders are
always smaller,
faster, less
energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

14

FxP vs. FlP: Multipliers

• FxPN
– Fixed-Point
– N bits

• FlTN(E)
– Floating-Point
– N bits
– Exponent E bits

• FlP multipliers are
smaller, faster, but
consume more
energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

15

Custom Floating-Point

• Difference in cost/energy
between float/fixed is smaller
for low-precision operators

• Slower increase of errors for
floating-point
– e.g., 8-bit float is still effective

for K-means clustering

Floating-Point: ct_float8
5-bit exponent
3-bit mantissa

Reference: double

Approximate K-Means Clustering

[SiPS’17]

16

Custom Floating-Point

• ct_float: a Custom Floating-Point
C++ Library
– Synthesizable (with HLS) library
– Templated C++ class

ct_float<e,m,r>
• Exponent width 𝑒 (int)
• Mantissa width 𝑚 (int)
• Rounding method 𝑟
• Bias 𝑏

• Many possible design points
– latency constraints, rounding modes, etc.

ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;

https://gitlab.inria.fr/sentieys/ctfloat

17

How does this apply to
DNNs?

18

Approximate DNNs

• Float
– half-precision
– Bfloat16

• Fixed-point
– INT8

• Block floating-
point

• BNN/TNN

19

Approximate DNNs: Low-Precision

• Not only Weights, but also Activations,
Per-Layer Quantization, etc.

4-bit activations and
10-bit weights keeps
accuracy near (98.4%)
32-bit float reference

Resnet-18, CIFAR100

20

What is still difficult: learning

• Learning: gradient descent and backpropagation

𝑦!

• This is very expensive to compute, even in HW
• Approximating and accelerating learning is much

more difficult

15 Approximations in Deep Learning 5

of training a neural network is to find/learn a set of parameters that minimizes the
average loss over a large training set.

To train a network, its weights (wi j) are usually updated using a form of Stochastic
Gradient Descent (SGD) iterative optimization process. This means that weight is
updated by a scaled version of the partial derivative of the loss function `with respect
to the weight. In the most basic form, at iteration t, the weight update formula is
given by:

wt
i j = wt�1

i j � ↵
@`

@wt�1
i j

, (15.1)

where ↵ is called the learning rate2. The partial derivatives of ` can be computed
e�ciently through a process called backpropagation [132]. It is e�ectively an ap-
plication of the chain rule from calculus, and it works by passing values backward
through the network to compute how ` is a�ected by each weight. At each layer, the
procedure is twofold and is exemplified in Figure 15.2. To backpropagate through
a layer: (a) compute the gradient of the loss with respect to the weights, @`/@wi j ,
from the layer inputs (i.e., the forward activations xi) and the gradients of the loss
relative to the layer outputs, @`/@y j ; and (b) compute the gradient of the loss relative
to the layer inputs, @`/@xi , from the layer weights, wi j , and the gradients of the loss
relative to the layer outputs, @`/@y j .

Computing the gradients of the loss function ` over the entire dataset is generally
much too complicated in practice, which is why the loss is usually taken only on a
(small) subset, called a mini batch, of the training data. The use of batches allows
taking advantage of single instruction multiple data (SIMD)-like parallelism on
modern GPUs while keeping the complexity of gradient computation manageable.
A complete iteration of the training process is called an epoch and requires passing
through all of the mini-batches, applying (15.1) for each one of the corresponding
average losses `. Training is carried out for several epochs until convergence to an
appropriate solution is reached.

Both inference and training amount in most part to the same type of computations
(i.e., matrix/vector additions and multiplications). There are important di�erences,
however. For one, as the previous paragraph suggests, training is much more ex-
pensive, since apart from passing through the entire training data multiple times, it
also requires that intermediate outputs and partial derivatives be stored when per-
forming backpropagation. Secondly, due to the gradient update rule, the precision
requirements for training are generally higher than for inference, thus also a�ecting
performance. The e�ect is that the inference quantization techniques that will be
discussed in this chapter are not usually directly applicable to training as well.

2 The deep learning optimization literature describes many ways how to perform the parameter
updates and how to choose the learning rate.

21

Mixed-Precision Training

[NVIDIA, Mixed precision training, 2018]

22

Low-Precision Training of DNNs

– Explore mixed numerical precision hardware
– Low-precision floating-point, variable-

precision variants, building the accelerator

VGG16 training with Cifar-10

23

Can we Tune Precision
Automatically?

Automatic Precision Tuning
[also Word-Length Optimization (WLO)]

• Optimization process that
– determines the number of bits for each data
– minimizing a cost function C
– constrained by (application) quality degradation l
• e.g., noise power, SSIM, abs. error

Quality
DegradationSpeed

Power
Area

C(•) �(•)

26

Multiple Word Length

Automatic Precision Tuning

1 1 1 0 1 1 1 0 1 0 0 1 0 1 1

1 0 1 0 1 0 1 1 1 0 1 1 0 1 1

1 0 1 0 0 1 1 0 1 0 1 1 1 1 0

1 0 1 1 1 1 1 1 0 0 1 1 0 0 1

1 1 1 1 0 1 0 0 1 1 1 1 0 0 1

Fractional Word LengthInteger Word Length

x0

x1
x2

xk

xN-1

… …

… …

…

…

Variable

Uniform Word Length

0

1

1

1

1

w0

w1

w2

wk

wN-1

…

…

O(BN)

Fixed-Point Arithmetic
N: number of variables

B: number of bits to explore per variable

27

Automatic Precision Tuning

• Multi-variable word-length optimization

• Known to be non-convex and NP-hard
• Optimized using heuristic rules,

iterative optimization process,
stochastic approaches

min (C(w)) subject to �(w) �obj

l(
W

)

Iterations

MinWL

�obj

𝜆(𝒘): accuracy degradation of solution 𝒘
𝐶(𝒘): cost of solution 𝒘
Data word lengths: 𝒘={𝑤0,𝑤1,…,𝑤𝑁−1}
Maximum degradation: 𝜆obj

28

Speeding-up Global Search

• Combine Bayesian Optimization
and Local Search
– Bayesian Optimization for

narrowing down solution space
– Fine-tuning with local search

• Transition point based on
statistical metrics
– word-lengths (WL) are

distributed with low variance
• e.g., with less than 1 bit

• Optimization time is reduced by
50-80% w.r.t. best algorithm
with similar cost

speed-up

[DATE’21]

29

Scaling the WLO Procedure

• Large system sizes present enormous complexity
– Too many variables for global optimization

Multi-kernel approach

• Key idea: construct models that express
– impact of noise budgets to Cost and Accuracy
– relation among noise budgets

• Significantly reduce exploration time and improve the
quality of the solutions for large applications

In Kernel #1 OutKernel #3Kernel #2

𝜆" 𝜆# 𝜆$ 𝜆%

[DATE’20]

30

Accuracy Evaluation

• One of the most time consuming tasks during
precision tuning

• Models for quantization effect analysis
– Analytical accuracy evaluation
– System-level estimation [ICCAD’14, DATE’16]

– Speeding-up simulations [DATE’20, ICCAD’14]

Noise source
model

Noise
propagation

model

System-level
model

Word-length

Widrow model Perturbation theory Single noise source

Source noise
moments

Output noise
moments

Application
quality

𝜆(𝒘)
Accuracy evaluation

𝒘

31

TypEx: A Framework for Type Exploration

• Source-to-source
– C code in float to C

code using custom
arithmetic

• Word-length
optimisation
– fixed or float

Application
Description

C Code (float)+pragmas

Cost
model Type

Exploration

Fixed-Point
Floating-Point

Accuracy
constraint

C++ Code
Customized Arithmetic

MSE
PSNR
SSIM

TypEx

32

Accuracy and Hw Aware Exploration

33

Conclusions

• Most applications tolerate imprecision
• Playing with precision is an effective way to

save energy consumption
– Number representations, low-precision
– Not only computation, but also memory and

transfers
– Run-time accuracy adaptation would increase

energy efficiency even further

• Low-Precision Training and Inference

34

Open Issues

• Exploring number representations and word-
length is a difficult problem for large applications
– Mainly limited by simulation time to evaluate

accuracy
– Automatizing the choice between (or combining) float

and fixed is a challenge
• Towards an automatic optimizing compiler framework

– Domain-specific knowledge is a key
• Evaluating cost is also an important (and less

studied) issue
– e.g., #weights alone is not a good metric
– e.g., unstructured pruning reduces performance
– Hardware-aware pruning/quantization requires a

good cost model

