An Optimization Playground for
Precision and Number
Representation Tuning

The case of Approximate Deep Learning Accelerators

Olivier Sentieys

Univ. Rennes, Inria

. (&:IRISA

RENNES 1

rennes

Energy Cost in a Processor/SoC

64-bit FPU: 20pJ/op
32-bit addition: 0.05pJ
16-bit multiply: 0.25pJ

Wire energy é
— 240f)/bit/mm per T

— 32 bits: 40pJ/word/mm

— 8 bits: 10pJ/word/mm

[Adapted from Dally, IPDPS’11]

Memory/Register-File
— Depends on word-length

DRAM
16n [Rd/Wr

28nm

0 CMOS

| 50 pJ (8 kB SRAM)

Energy strongly depends on data representation and size

2

Complexity Issues of Deep NNs

e Deep (Convolutional) Neural Networks

POOL
RELU RELU RELU RELU

CONV cowi CONV cowi

Input

ﬁ

POOL

POOL
RELU RELU

CONV CONVi

FC FC

|

Output

Top-1 accuracy [%]

ResNet-50
training batch=4

NASNet-A-Large
SE-ResNeX!t-101(32x4d)
80 hceptign—ResNet-vz SENOH14
4 v ol
SE-HathweSOCaxa) Xception IPathNet- IPathNet-131
SE-ResNet- esNet-152 eXt-101(64x4d)
SE-ResNel D Incaption-v3 aNeXt-101(32KgResNel-152
DenseNet-201@) Wensenet 151 @PSNet-10" (B Restiet-152
® Onresetso @RCaffe-ResNet-101 VGG-19 BN
75] DualPathNet-68 DenseNet-169 VGG—16__BN
DenseNet-121
® NASNet-A-Mobile
BN-Incabtion @ ResNet-34 VGG-13 BN
@ MobileNet-v2 VGG-41:BN
VGG-19
70 4 o ResNet-18 VGG-16
MobileNet-v1
¥ ShuffleNet
.GoogLeNel
)/)/
/7 7/
88/ /]
iM 5M 10M S50M 75M 100M 150M
SqueezeNet-v1.1
‘e SqueezeNet-v1.0
’AIexNet
55 L}]]]
0 5 10 15 20 25
Operations [G-FLOPs]

Even Worse for Training...

e Carbon footprint of DNN training

Analyzing the carbon footprint of current natural-language
processing models shows an alarming trend: training one
huge model for machine translation emits the same
amount of CO2 as five cars in their lifetimes (fuel included)

[Strubell et al., ACL 2019]
 Many more operations than inference

* More pressure on memory aCcess

* Much more difficult to accelerate

Need for a Significant Reduction of the Carbon
Footprint of Neural Network Training Hardware

Approximate Computing

* Many applications are error resilient

— media processing, data mining, machine
learning, web search, etc. o
* AxC performs approximations to reduce energy
and increase execution speed while keeping
accuracy in acceptable limits
— Relaxing the need for fully precise operations

— Number representations
and word-length

i if;i:- b
| o ;‘
| BB

i
Application quality degradation >

* Design-time/run-time

e Different levels

Resilience of NNs?

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr the
Itteers in a wrod are, the olny iprmoatnt tihng
is taht the frist and Isat Itteer be at the rghit
pclae. And we spnet hlaf our Ifie larennig

how to splel wrods. Amzanig, no!
[O. Temam, ISCA10]

* Our biological neurons are tolerant to computing
errors and noisy inputs

* Quantization of parameters and computations
provides benefits in throughput, energy, storage

This rest of this talk is about

* Reducing the numerical precision of
arithmetic operations is a general way to
increase performance and energy
efficiency in computing
— How does this apply to DNNs?

— Can we design low-precision accelerators for
inference and training?

— Can we do this precision tuning
automatically?

Number Representations

Floating-Point (FIP) * Fixed-Point (FxP)

e R e S Py

s: sign, m: manltissa, e: exponent p: integer, K=2": fixed scale factor
s le..le., e e, 1 Mol | me — Integer arithmetic

Exponent: Ebits | Mantissa: M bits — Efficient operators

— Easy to use * Speed, power, cost

— High dynamic range — Hard to use..

— |EEE 754 +Zb o
mnnm s: sign, m: magmtudel,_n.nfractlonal

2m—1 21 20 !2—1 2-n

Single Precision
Double Precision 11 52 1023 i b1 | bo | ba | b s

Integer part: m bits Fractional part: n bits

Number Representations

* Energy, delay, and area vary a lot between
numeric formats and word-length

yyE—

8-bit integer 0.03pJ /36um2 0.2pJ / 282um?
32-bit float 0.9p) / 4184um?2 3.7pJ / 7700um>
Relative energy cost Relative area cost

Operation: Energy (pJ) Area (um?)

8b Add 0.03 36

16b Add 0.05 67

32b Add 0.1

16b FB Add 04

32b FB Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FB Mult 1.1

32b FB Mult 3.7

32b SRAM Read (8KB) 5

32b DRAM Read 640

1 10 100 1000 10000 1 10 100 1000

Energy numbers are from Mark Horowitz *Computing’s Energy problem (and what we can do about it)*. ISSCC 2014
Area numbers are from synthesized result using Design compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Floating-Point Arithmetic

., FIP Adder

* Floating-point i
nardware is doing the o dtererce vy]
job for you! =]
5 |1-bit shift my i
B e % +2
LZA |mg — my| p r b
il — 4/~ sticky
* FIP operators are R i
|_T_| e | prenorm (2-bit shift) |
therefore more S I G
complex
c/f
H R R e rounding,normalization
g and-exception handling
Fixed-point addition A
equivalent 2

[J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009] 10

What can be customized?

* Of course precision
— Exponent (E) and Mantissa (M) bit-width
— e and m both impact accuracy

* Play with exponent bias

* Sub-normal numbers or not?

e 0, 00, NaN?

* Rounding modes
— 10 nearest, truncation, to O/OO

* |Inexact integer operators

11

LP-Floating-Point Multiplication

 Example: 7 bits, (2,5)

ey 1l0/2f 1.m, ={1.0; 1.5}

1104 1.m,={1.0;1.5}

1.m, = {1.0; 1.5; 2.25}
s;=s,NXORs, €:=éx+e,+(mxANDmy) 1.m, = {1.0; 1.5; 1.5 or 1.0}

1 m, =m, OR/XOR m,

S,

e 5-bit adder and 3 gates!

FxP vs. FIP: Adders

FXPy

— N-bit Fixed-Point
FIT\(E)

— N-bit Float

— Exponent E bits

FxP adders are
always smaller,
faster, less
energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

Rel. area

Rel. Energy/Op

w ~ O

Rel. delay
OOI—‘HI\)I\)OOOOA

=

N OUIOUIOUIOUIO © F, N
T

O N B~ O OO

FXP vs. FIP: Multipliers

2.0 I

° FXPN 15 H Py [IlleN(4) I:IIFITN(G) I:II FITn(8) |
[. T [
— Fixed-Point 2 1.0
— N bits © 05
0.0
* FIT\(E) 1o
— Floating-Point ., 1.0
% 0.8
— N bits < 0.6
! T 0.4
— Exponent E bits % .
0.0
12
* FIP multipliersare ¢*
smaller, faster, but g 6
4
consume more g 2
0

energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime 14

CUStOm Floatl ng_ POi nt Approximate K-Means Clustering

» Difference in cost/energy
between float/fixed is smaller |
for low-precision operators

-0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Reference: double

0.6

* Slower increase of errors for
floating-point

0'0'.3 .

— e.g., 8-bit float is still effective |

for K-means clustering
[SiPS'17]

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Floating-Point: ct_floatg
5-bit exponent
3-bit mantissa 15

Custom Floating-Point

* ct float: a Custom Floating-Point

C++ Libra ry https://gitlab.inria.fr/sentieys/ctfloat

— Synthesizable (with HLS) library
— Templated C++ class

ct float<e,m,r>

* Exponent width e (int)

t float<8,12,CT RD> Xx,y,2Z;
1.5565e-2;

C
X
z X + vy,

* Mantissa width m (int)
* Rounding method r
e Bias b

* Many possible design points

— latency constraints, rounding modes, etc. -

How does this apply to
DNNSs?

Approximate DNNs

Structure
Refinement

Knowledge
Distillation

Data-Oriented
Refinement

Pruning

Compact
Architecture

Quantization

Neural
Architecture
Search

Weight
Sharing

Operator
Refinement

Dedicated
Operators

Approximate

Operators

Structured
Matrices

Float

— half-precision
— Bfloat16
Fixed-point

— INT8

Block floating-
point

BNN/TNN

18

Approximate DNNs: Low-Precision

* Not only Weights, but also Activations,
Per-Layer Quantization, etc.

Accuracy with (weight mantissa size , weight exponent size) in the legend

Accuracy

4-bit activations and
_ 10-bit weights keeps
accuracy near (98.4%)
32-bit float reference

100 1
80 A
o Resnet-18, CIFAR100
—— (2,4)
—— (1,3)
40 A (3.3)
—o— (1,5)
(1,8)
20 4 —o— (3,8)
—— (23,5)
+ - t - —— (23,8)
L) 1) 22 L3 44 (58 (238

Activation quantization (mantissa, exponent)

19

What is still difficult: learning

* Learning: gradient descent and backpropagation

* This is very expensive to compute, even in HW

* Approximating and accelerating learning is much

more difficult
20

Mixed-Precision Training

2. Make an FP16 copy and forward/backward propagate in FP16

float2half ——> Weights &» F16

isnsteanetn s dllnd FWD ——>» Activations

F16 :
T F16 . <«— Weights
A —_) . .
ctivation Grad <—— BWD-Activ g B B b

F16
Weight Grad F16 B -<— Activations
BWD-Weight 4& Activation Grad

1. Keep weights in FP32

Master-Weights (F32) s Weight Update W2 R Updated Master-Weights

3. Do weight update in FP32

[NVIDIA, Mixed precision training, 2018] 21

Low-Precision Training of DNNs

3000 1

2500 4

numbers

1000 4

distribution-1st Epoch

1500 1

40 =35 =30 =25 =20 =15 =10
Base.2 logarthm of absolute values

-5

1400

1200

1000

€00 1

400 4

200

VGG16 training with Cifar-10

distnibution-final Epoch

-40

-35 -30 -25 ~-20 ~-15 =10 -5
Base-2 loganthm of absolute values

0.6

0.5

—gxpS mani

—gxpS man2

——expb_man2

HighPrecision

Can we Tune Precision
Automatically?

Automatic Precision Tuning

[also Word-Length Optimization (WLO)]

e Optimization process that
— determines the number of bits for each data
— minimizing a cost function C
— constrained by (application) quality degradation A

* e.g., noise power, SSIM, abs. error

Automatic Precision Tuning

Mikiwha Word Length

Variable Integer Word Length Fractional Word Length
Xo [1][2]{z][o]z]{z][] o][2][o][0][2][o] 1][2][0
X, [1]{ola][o][z][e][a]{2][2][o][1][x][o][1][1][2
X3 [1][0][2][o][e][2][2]i[0][1][0] 2|[2][1] 2] 0]
X 1@!;1!!&00110011

Xn-1 !!!!@!@%11110011

Fixed-Point Arithmetic

N: number of variables
B: number of bits to explore per variable

= O(B")

26

Automatic Precision Tuning

 Multi-variable word-length optimization

min (C(w)) subject to A(W) < Agp;

e Known to be non-convex and NP-hard
* Optimized using heuristic rules,

L] [[[] [g MinWL
Iterative optimization process, < po ey
oD R e e T

stochastic approaches

[terations

A(w): accuracy degradation of solution w

C (w): cost of solution w

Data word lengths: w={wy,w,,...,wy_1}

Maximum degradation: 4, 27

Speeding-up Global Search

 Combine Bayesian Optimization

and IR (33 variables)
— Bayesian Optimization for 60| rPe
narrowing down solution space Acoecy gt
55

— Fine-tuning with local search

e Transition point based on
statistical metrics

— word-lengths (WL) are

w
o

Accuracy
Fes
(9]

distributed with low variance 35 A
* e.g., with less than 1 bit 30l
Sy : . 0 1p00 2000 | 3000 4000
* Optimization time is reduced by Pl
50-80% w.r.t. best algorithm e

with similar cost
[DATE’21] 28

Scaling the WLO Procedure

e Large system sizes present enormous complexity
— Too many variables for global optimization

In —{ Kernel #1 T Kernel #2 T Kernel #3 T—T Out

A A, Az As
Multi-kernel approach

* Key idea: construct models that express

— impact of noise budgets to Cost and Accuracy
— relation among noise budgets

* Significantly reduce exploration time and improve the
qguality of the solutions for large applications

[DATE’20] 29

Accuracy Evaluation

Accuracy evaluation

* One of the most time consuming tasks during
precision tuning
* Models for quantization effect analysis
— Analytical accuracy evaluation
— System-level estimation [iccaD’14, DATE’16]
— Speeding-up simulations [DATE’20, ICCAD’14]

Source noise Output noise Application
moments moments quality

. Noise
Noise source ropasation System-level
model propas model
model

Widrow model Perturbation theory Single noise source 30

Word-length

TypEx: A Framework for Type Exploration

e Source-to-source

— Ccodein floatto C
code using custom
arithmetic

* Word-length
optimisation
— fixed or float

Application 3

A

ey faC
Description '_.

C Code (float)+pragmas 1

Cost
model Type
" Exploration
o .
MSE Fixed-Point
PSNR » | Floating-Point
SSIM Accuracy
constraint . J
] 2
@eclipse =
A C++ Code
G e C 0 S Customized Arithmetic

Generic Compiler Suite

31

Accuracy and Hw Aware Exploration

Approximate Operators Library AOL
(AOL)
and
Accuracy Analytical Model
Databases (AAMD)
and
Performance Models (PM): Area, [AanmD PM Accuracy Aware
Power, Execution Time, etc.. PM > Optimizer

...................... (AAO)

Optimized
G Code

Training &
Test
Databases

< ; HLS Open-Cl
!
Back-end

Training

111
AXCNN HW Accelerator

32

Conclusions

* Most applications tolerate imprecision

* Playing with precision is an effective way to
save energy consumption
— Number representations, low-precision

— Not only computation, but also memory and
transfers

— Run-time accuracy adaptation would increase
energy efficiency even further

* Low-Precision Training and Inference

33

Open Issues

e Exploring number representations and word-
length is a difficult problem for large applications

— Mainly limited by simulation time to evaluate
accuracy

— Automatizing the choice between (or combining) float
and fixed is a challenge
e Towards an automatic optimizing compiler framework

— Domain-specific knowledge is a key
e Evaluating cost is also an important (and less
studied) issue
— e.g., #weights alone is not a good metric
— e.g., unstructured pruning reduces performance

— Hardware-aware pruning/quantization requires a
good cost model

34

