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Complexity Issues of Deep Neural Networks 

• Two main tasks

– training - determine set of network 
parameters to solve a task (minimize a 
loss on a training set)

– inference - given an input, compute
(forward propagate) using the trained
network

ResNet-50 
training batch=4

Poplar® graphs have many 
more vertices than 
TensorFlow graphs – typically 
millions, to load-balance a 
machine executing tens of 
thousands of codelets in 
parallel.

The TensorFlow IPU backend 
uses the Poplar® libraries to 
break TensorFlow compute 
functions and large tensors 
into fragments.
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Computing power demand of AI

• is higher than what computer architectures can bring
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Evolution of the number of parameters
• is much higher than available (on-chip) memory capacity
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Evolution of bandwidth

• is much slower than FLOPS
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Memory Bottleneck

Data movement
• move input data & model from 

memory to compute units
• send partial results back to 

memory

Computations
• vector/matrix manipulations
• done on CPU, GPU, or 

custom accelerators (e.g., 
FPGA, ASIC)
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Need for DNN Compression

Inference outputNew input data
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Need for DNN Compression

• From Sensors to Clouds

• For both Inference and Training

Specialization: !
An idea whose time has come"

47&

•  One(FPGA(per(blade(
•  All(FPGAS(connected(in(half(rack(
•  6×8(2VD(torus(topology(
•  HighVend(StraXx(V(FPGAs((
•  Running(Bing(Kernels(for(feature(

extracXon(and(machine(learning(

Microsol&Unveils&Catapult&to&&
Accelerate&Bing!&

[EcoCloud&Annual&Event,&June&5th,&2014]&
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Computer Architectures

• Energy consumption is a major issue
• Utilization wall
• End of Moore’s law…

• Domain-Specific Architectures are the 
road ahead
– Energy efficiency requires deeply specialized 

hardware
– which also may come with pain from the programmer

Dark Silicon
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What is DNN quantization?

• store network parameters in 
low precision

• store/compute intermediate
signals in low precision

• store/compute back 
propagated gradients in low
precision



Quantization effects: the good
Memory usage

storage needed for weights
and activations is

proportional to bit width

Memory access
energy (pJ)

Cache (64-bit)
8KB 10

32KB 20
1MB 100

DRAM 1300-
2600

Up to 4x
More due to 
locality

MULT energy (pJ)

INT8 INT32 FP16 FP32

0.2 3.1 1.1 3.7

18.5x energy reduction

ADD energy (pJ)

INT8 INT32 FP16 FP32

0.03 0.1 0.4 0.9

30x energy reduction

Power and energy consumption
energy is significantly reduced for
both computations and memory

accesses

MULT area (μm2)

INT8 INT32 FP16 FP32

282 3495 1640 7700

27x area reduction

ADD area (μm2)

INT8 INT32 FP16 FP32

36 137 1360 4184

116x area reduction

Silicon area

8-bit arithmetic and below
requires much less area

Sources: Mark Horowitz (Stanford), energy based on ASIC, area based on TSMC 45nm process
Wikimedia Commons

Latency
less memory access and simpler

computations lead to faster 
execution and reduced latency

01010101

01010101

01010101

01010101

01010101

FP32
111.125

INT8
111



Quantization effects: the good and the bad
Limited precision

!
3.1415927410125732421875

3.1415926535897…

3.140625

32-bit floating-point

8-bit unsigned fixed-point: !! = ⌊! ⋅ 2"⌉/2"
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DNN Quantization Methods

• PTQ: Post-Training Quantization
• QAT: Quantization-Aware Training

–13

! " #{%}
weights: n bits
activations: m bits

Resnet-18
CIFAR-100
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How to find a suitable bit-width ?

Adaptive QAT

• Learning the bit-width
during training 
– Both weights and activations 
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Adaptive QAT

• Learning the bit-width
during training 
– Both weights and activations 
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Even Worse for Training…

• Carbon footprint of DNN training

– Many more operations than inference 
– More pressure on memory access
– Much more difficult to accelerate

Need for a Significant Reduction of the Carbon 
Footprint of Neural Network Training Hardware 

Analyzing the carbon footprint of current natural-language processing 
models shows an alarming trend: training one huge model for machine 
translation emits the same amount of CO2 as five cars in their lifetimes 
(fuel included) [Strubell et al., ACL 2019]
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Low-Precision Training of DNNs

• Explore mixed numerical precision hardware
– Low-precision floating-point, variable-precision variants, 

building the accelerator

VGG16 training with Cifar-10
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Arithmetic Support in Latest Chips?
• Various trade-offs in terms of 

range, precision, performance
• Nvidia Hopper GH100 GPU

– FP8 support in tensor cores
provides up to 4x speedup

Range
exponent

Precision
mantissasi

gn

FP32

TF32

FP16

BF16

FP8
(E5M2)
FP8
(E4M3)

e8

e8

e8

e5

e5

e4

m23

m10

m10

m7

m2

m3
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Energy Gains of Low Precision

• Adder (float)• Multiplier (float)

8 bits 32 bits
>30x

8 bits 32 bits
>200x
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DNN Pruning

• Pruning does not always translate into energy savings

Design of Efficient DNN Algorithms

o Focus on reducing number of MACs and weights
o Does it translate to energy savings and reduced latency?
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Efficient Network Architectures

... also reduced precision

Popular efficient DNN algorithm approaches 

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 26
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• Structured pruning provides higher efficiency

DNN Pruning
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Hardware-Aware Pattern Pruning
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Key Takeaways
• Energy efficiency requires deeply specialized hardware

– Basic tasks of DNNs are easy to accelerate

• Deep knowledge of the hardware is required to propose 
energy-efficient models and techniques
– Hardware-aware optimizations are mandatory

– Structured pruning

– Scaling quantization to large models, leverage mixed-precision

– Efficient data-free quantization

– Low-precision training (e.g., FP8)

• Of course, I am sorry (and not responsible?) for any rebound 
effect due to this work...
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TARAN Team at a Glance

• Domain-Specific Computers
in the post Moore’s law era

• IRISA/INRIA 

• ~35 people, Rennes and Lannion campuses

• from INRIA, Univ. Rennes 1, ENS Rennes

• Domain-specific computing architectures and compilers

• Energy efficiency, fault tolerance, security

Rennes

Lannion


