Compressing Deep Neural Networks for Deployment or Training

Hardware Accelerators that Compute Just Right!

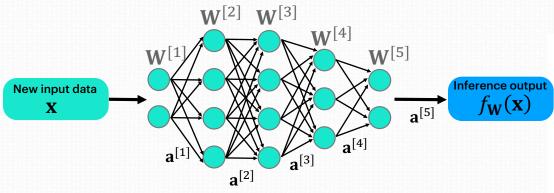
Olivier Sentieys Univ. Rennes, Inria, IRISA olivier.sentieys@irisa.fr

Innin -

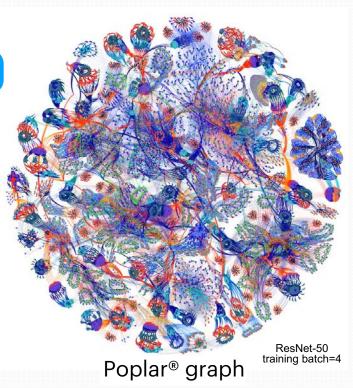
joint work with Silv<mark>iu Filip, Léo Pradels,</mark> Cédric Gernigon, Sami Ben Ali, Mariko Tatsumi, Guy Lemieux

M M

Complexity Issues of Deep Neural Networks

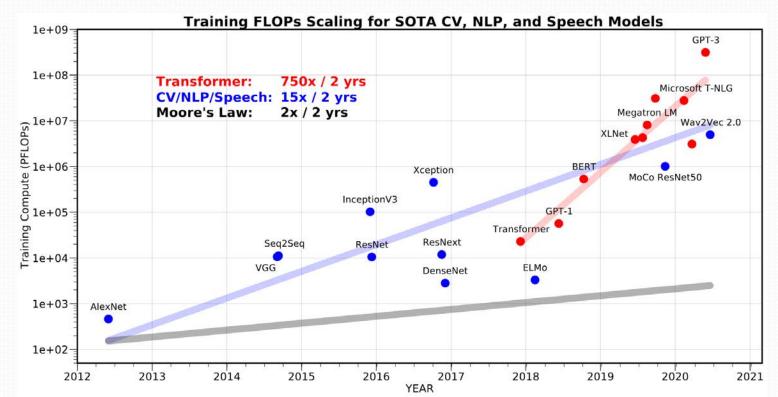


- Two main tasks
 - training determine set of network parameters to solve a *task* (minimize a loss on a *training set*)
 - inference given an input, compute (forward propagate) using the trained network



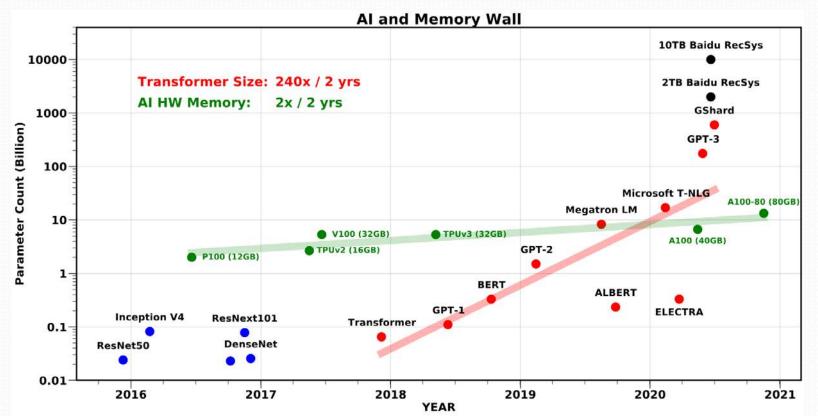
Computing power demand of AI

• is higher than what computer architectures can bring



Evolution of the number of parameters

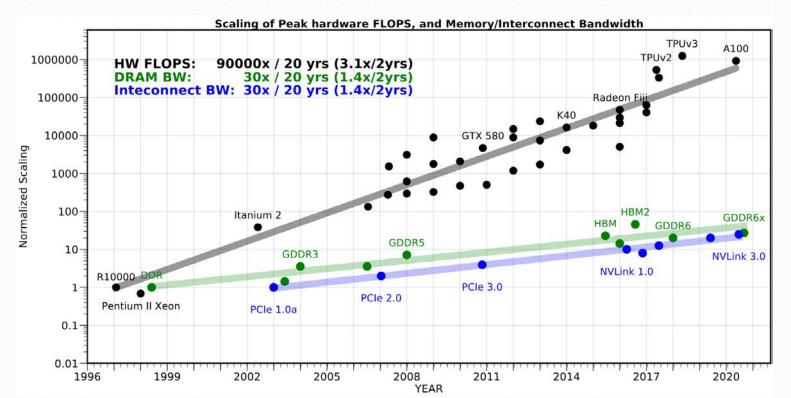
• is much higher than available (on-chip) memory capacity



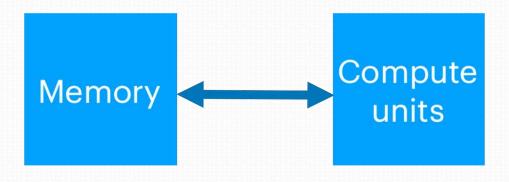
4

Evolution of bandwidth

• is much slower than FLOPS



Memory Bottleneck



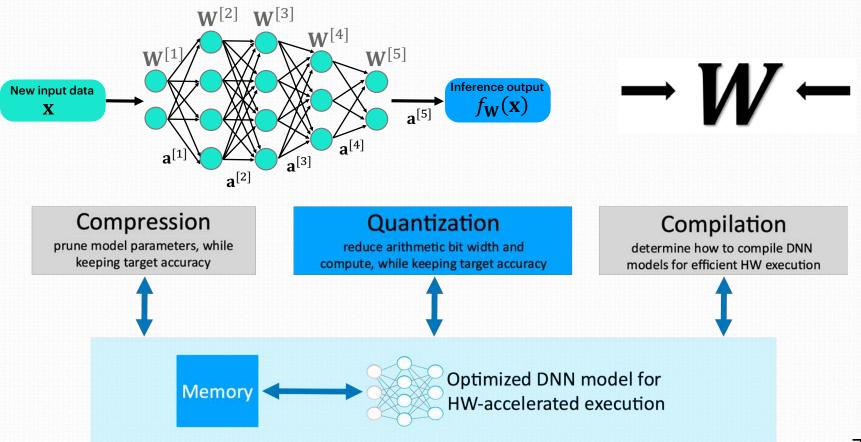
Data movement

- move input data & model from memory to compute units
- send partial results back to memory

Computations

- vector/matrix manipulations
- done on CPU, GPU, or custom accelerators (e.g., FPGA, ASIC)

Need for DNN Compression



Need for **Meed** N Compression

• From Sensors to Clouds

• For both Inference and Training

Computer Architectures

- Energy consumption is a major issue
- Utilization wall
- End of Moore's law...

- Domain-Specific Architectures are the road ahead
 - Energy efficiency requires deeply specialized hardware
 - which also may come with pain from the programmer

Dark Silicon

What is DNN quantization?

- store network parameters in low precision
- store/compute intermediate signals in low precision

 store/compute back propagated gradients in low precision

24 bits per pixel

Quantization effects: the good

Memory usage

storage needed for weights and activations is proportional to bit width

Power and energy consumption

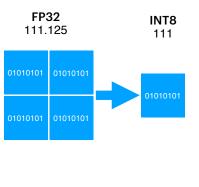
energy is significantly reduced for both computations and memory accesses

Latency

less memory access and simpler computations lead to faster execution and reduced latency

Silicon area

8-bit arithmetic and below requires much less area



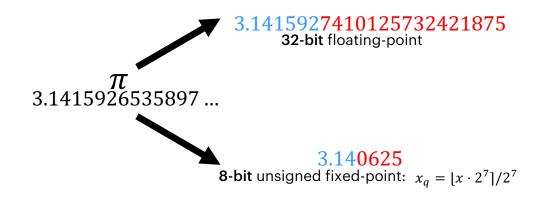
	ADD ene	Memory access energy (pJ)			
INT8	INT32	FP16	FP32		
				Cache (64-bit)	
0.03	0.1	0.4	0.9	8KB	10
30	X energ	32KB	20		
	MULT en	1MB	100		
		DRAM	1300-		
INT8	INT32	FP16	FP32		2600
0.2	3.1	1.1	3.7	Up to 4x	
18.	5x energ	More of loca			

MULT area (μm²)						
INT8	INT32	FP16	FP32			
282	3495	1640	7700			
27x area reduction						

ADD area (µm²)						
INT8	INT32	FP16	FP32			
36	137	1360	4184			
116x area reduction						

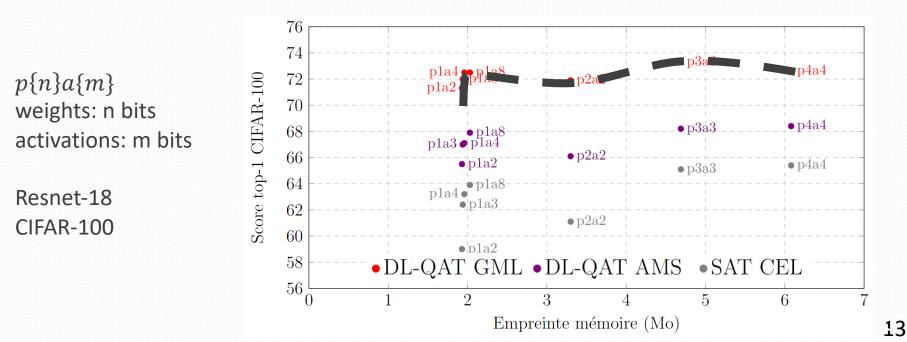
Quantization effects: the good and the bad

Limited precision



DNN Quantization Methods

- PTQ: Post-Training Quantization
- QAT: Quantization-Aware Training



Adaptive QAT

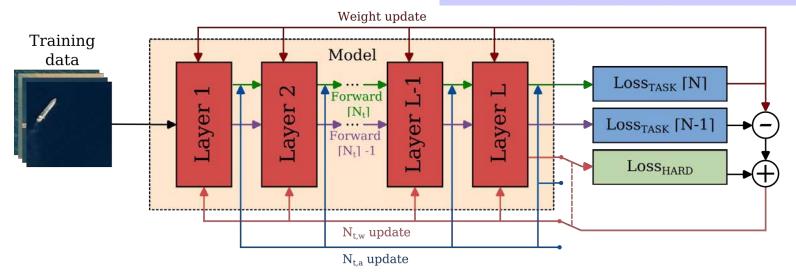
- Learning the bit-width during training
 - Both weights and activations

Hardware Loss:

$$\begin{split} N_t \in \mathbb{R}^*_+ \text{: bit-width, a new parameter to optimize} \\ \mathbb{L}_{\text{Hard}} &= \alpha \cdot \sum_{l=1}^{L-1} \Big\lceil N_t^{(l)} \Big\rceil \end{split}$$

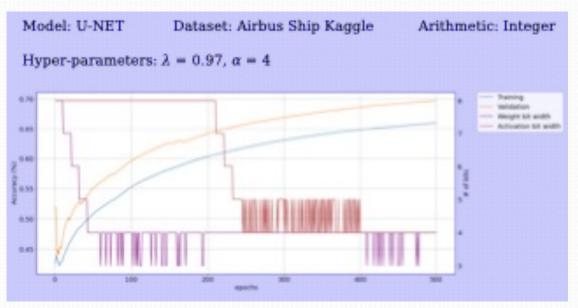
Total loss: $L_{\text{Total}} = \lambda \cdot L_{\text{Task}} [N_{\ell}] + (1 - \lambda) \cdot L_{\text{Hard}} [N_{\ell}]$

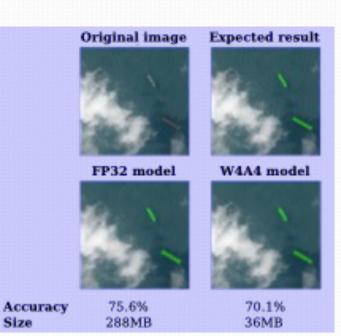
Bit-width gradient approximation: $\lambda \cdot (L_{\text{Task}} \lceil N_t \rceil - L_{\text{Task}} \lceil N_t - 1 \rceil) + (1 - \lambda) \cdot \frac{\partial L_{\text{Hard}} \lceil N_t \rceil}{\partial \lceil N_t \rceil}$



Adaptive QAT

- Learning the bit-width during training
 - Both weights and activations





Even Worse for Training...

• Carbon footprint of DNN training

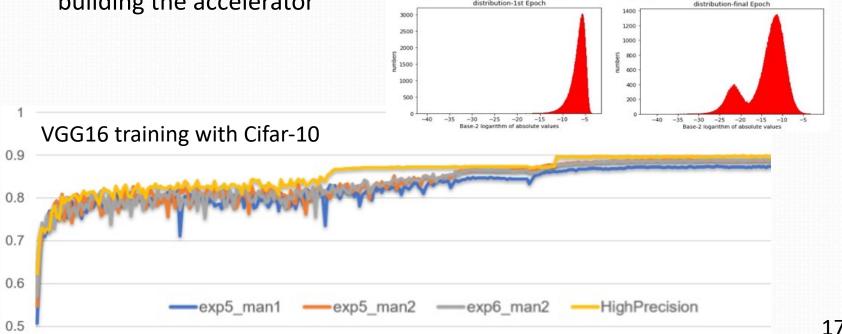
Analyzing the carbon footprint of current natural-language processing models shows an alarming trend: **training one huge model for machine translation emits the same amount of CO2 as five cars in their lifetimes** (fuel included) [Strubell et al., ACL 2019]

- Many more operations than inference
- More pressure on memory access
- Much more difficult to accelerate

Need for a Significant Reduction of the Carbon Footprint of Neural Network Training Hardware

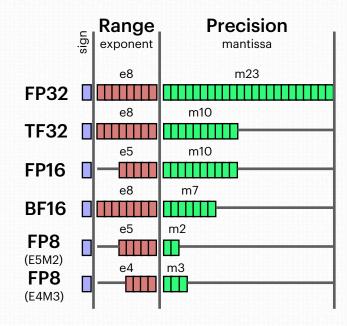
Low-Precision Training of DNNs

- Explore mixed numerical precision hardware
 - Low-precision floating-point, variable-precision variants, building the accelerator

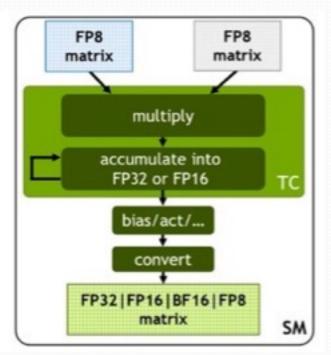


Arithmetic Support in Latest Chips?

• Various trade-offs in terms of range, precision, performance



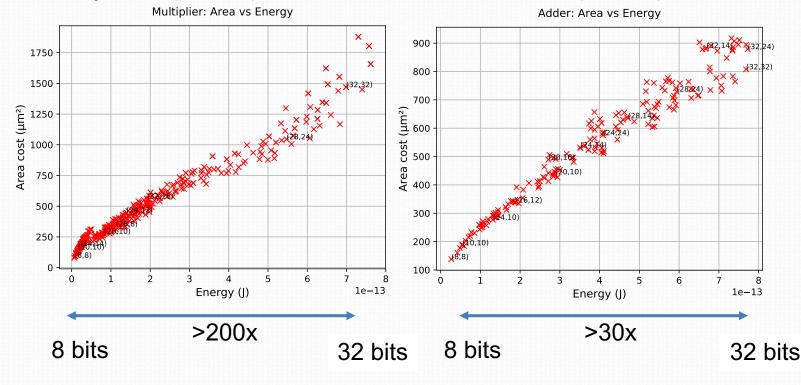
- Nvidia Hopper GH100 GPU
 - FP8 support in tensor cores provides up to 4x speedup



Energy Gains of Low Precision

• Multiplier (float)

Adder (float)



DNN Pruning

а

0

р

u

b

0

0

0

0

Ω

m

r

0

0

0

0

0

е

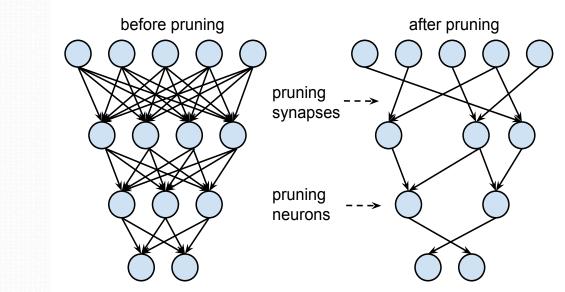
0

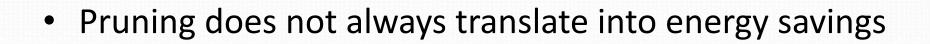
0

t

V

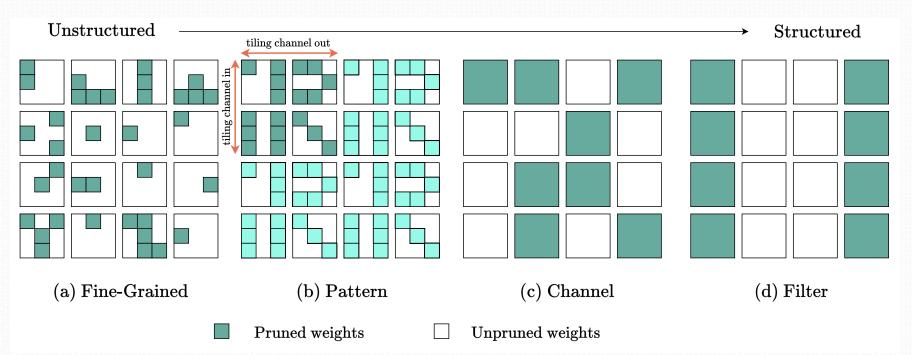
Network Pruning



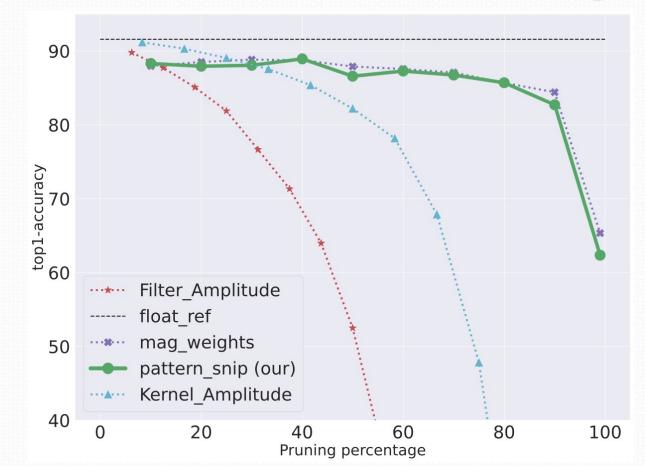


DNN Pruning

Structured pruning provides higher efficiency



Hardware-Aware Pattern Pruning



22

Key Takeaways

- Energy efficiency requires deeply specialized hardware
 - Basic tasks of DNNs are easy to accelerate
- Deep knowledge of the hardware is required to propose energy-efficient models and techniques
 - Hardware-aware optimizations are mandatory
 - Structured pruning
 - Scaling quantization to large models, leverage mixed-precision
 - Efficient data-free quantization
 - Low-precision training (e.g., FP8)
- Of course, I am sorry (and not responsible?) for any rebound effect due to this work...

TARAN Team at a Glance

• *Domain-Specific Computers* in the post Moore's law era

Lannion

- IRISA/INRIA
- ~35 people, Rennes and Lannion campuses
- from INRIA, Univ. Rennes 1, ENS Rennes
- Domain-specific computing architectures and compilers
- Energy efficiency, fault tolerance, security