
Opportunities for computer architecture
research with open-source hardware

The case of RISC-V

Olivier Sentieys
Univ. Rennes, Inria, Irisa, Taran
olivier.sentieys@inria.fr

Lignes connectiques de processeur.
Bouclier de protection (résistance).
Masque (visage) celtique.

Typographie moderne.

PROP. 5

mailto:olivier.sentieys@inria.fr

2

Key Messages

• This talk is about computer architecture
– A key enabler for research and innovation in many fields of CS
– Do we still need computer architecture (and compiler) research?

• Is Moore’s law really ending?
– No more free lunch
– A new golden age for computer architecture

• RISC-V: a standardized, free and open ISA
– The Linux of hardware?

• RISC-V and open hardware
– Key enablers for computer architecture research

3

Silicon Technology Evolution

• Now several billions or transistors!
– Apple M1: 33 B.Tr, 5nm, 2.5cm2

G

S

D

n+ n+L

A short interlude on Dark Silicon
and the several walls of computer architectures

Dark Silicon

5

Technology Scaling

28 nm 14 nm

Planar FDSOI Transistor Advantages

February 2012 Technology R&D

• Total dielectric isolation
– Lower S/D capacitances
– Lower S/D leakages
– Latch-up immunity

• Ultra-thin Body (TSi~1/3LG)
– Excellent short-channel immunity

• low SCE, DIBL
• No channel doping, no pocket implant

– Improved VT variation

• Ultra-thin BOX option
– Back-bias control

• Ground-plane implantation
– VT adjustment

Thin Silicon Channel

10

Classical (Dennard’s) scaling
Device count S2
Device frequency S
Capacitance, Vdd 1/S
Device power 1/S2
Utilization 1

Corei

100W@f

Corei

50W@1.4f

⁄1 2

n+ n+L

20 nm

1/S

n+ n+L n+ n+L

6

End of Dennard’s Scaling

• No more free lunch! Energy efficiency is not
scaling along with integration capacity

• Utilization Wall: percentage of a chip that can
switch at full frequency drops exponentially

• Replace dark cores with specialized cores
(10-100x more energy efficient)

Leakage limited scaling
Device count S2
Device frequency ~S
Device power (cap) 1/S
Device power (Vdd) ~1
Utilization 1/S2

Corei

100W@f

Corei

100W@1.4f
(w/o) leakage

⁄1 2

(since ~2016, 28nm)

More Computing Power?
More Electrical Power...

or Domain-Specific Computers

7

Silicon Technology Evolution

• Now several billions or transistors!
– Apple M1: 33 B.Tr, 5nm, 2.5cm2

• No more free lunch!
– No more scaling of performance and energy with technology
– End of technology (Moore’s law) scaling is near

G

S

D

n+ n+L

Power Density: 100
W/chip (~25W/cm2)
is a limit

Dark Silicon

Back to RISC-V
Instruction Set Architecture

● RISC-V: Free and Open RISC Instruction Set
Arch

– “new instruction set architecture (ISA) that was
originally designed to support computer architecture
research and education and is now set to become a
standard open architecture for industry”

10

Introduction

L’interface logiciel/matériel

R. Lashermes RISC-V 8 mars 2022 8 / 44

Instruction Set Architecture (ISA)

• How does the compiler know what instructions the chip
understands?

• Instruction Set Architecture
– abstract model of a computer
– interface between HW and SW
– Examples: x86 (Intel/AMD) and ARM

• Both are proprietary and need commercial licensing

• Not only defines instructions, but also
– supported data types, registers (number, size), size of address space,

address translation mechanisms, memory management, etc.

11

Instruction Set Architecture (ISA)

• Agreeing on the ISA gets you lots of good software:
– Tools that speak the language
– Compilers, assemblers, debuggers
– Emulators, simulators
– Documentation, programmer’s guides, application notes...

An ISA is a Standard

12

Instruction Set Architecture (ISA)

• ≠ microarchitecture, which is the set of processor design
techniques used, in a particular processor, to implement the
instruction set

RegFile

In
st

ru
ct

io
n

Ca
ch

e

Branch Unit

Fe
tc

h

De
co

de AL
U

Data
Cache

M
em

Fetch Decode Execute Memory Write Back

Forward

13

How many ISAs does a chip speak?

NVIDIA Tegra SoC

▪

▪

▪

SOC: System on a Chip 13

How many ISAs does a chip speak?

• > dozen ISAs on some SoCs – each
with unique SW stack
– Application processor (e.g. ARM)
– Graphics proc.
– Image proc.
– Audio proc.
– Radio proc.
– Security proc.
– ...

SoC: System on a Chip

How many ISAs does a chip speak?

NVIDIA Tegra SoC

By Poeggi - using sample chips with a photo-camera at
workPreviously published: n/a, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=24648921 /
cropped

SOC: System on a Chip 11

14

How many ISAs does a chip speak?

NVIDIA Tegra SoC

▪

▪

▪

SOC: System on a Chip 13

How many ISAs does a chip speak?

• Why?
– Application proc. ISA too big, inflexible for

accelerators
– IP (e.g. processors) bought from different

places, each with proprietary ISA
– Home-grown ISA

IP: Intellectual Property

• Do we need all these different ISAs?

• Must they be proprietary?

• Must they keep disappearing?

15

RISC-V: a Free and Open ISA

• “new instruction set architecture (ISA) that was originally
designed to support computer architecture research and
education and is now set to become a standard open
architecture for industry”

● RISC-V: Free and Open RISC Instruction Set
Arch

– “new instruction set architecture (ISA) that was
originally designed to support computer architecture
research and education and is now set to become a
standard open architecture for industry”

• More than 12 billions RISC-V cores
deployed for profit!
–expected to double this year and in 2023

16

RISC-V: a Free and Open ISA

• RISC project originally leaded by David Patterson at Berkeley
during the 80s
– MIPS at Standford in the same years

• RISC-V is the 5th generation of RISC ISA (2010)
• May 2014, released frozen base user spec
• RISC-V Foundation created to maintain it as a free and open

standard

• RISC-V: the instruction set for everything?

17

RISC-V Standard Base ISA (RV32I)

• 32-but fixed-width, naturally aligned instructions
• 31 registers x1-x31, plus x0 zero reg.
• rd/rs1/rs2 in fixed location, no implicit registers
• load/store, integer arithmetic, branch/jump
• Control and Status Registers (CSRs)

RISC-V Reference

RISC-V Instruction Set

Core Instruction Formats
31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

RV32I Base Integer Instructions
Name FMT Note

add ADD R 0110011 0x0 0x00 rd = rs1 + rs2

sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2

xor XOR R 0110011 0x4 0x00 rd = rs1 ˆ rs2

or OR R 0110011 0x6 0x00 rd = rs1 | rs2

and AND R 0110011 0x7 0x00 rd = rs1 & rs2

sll Shift Left Logical R 0110011 0x1 0x00 rd = rs1 << rs2

srl Shift Right Logical R 0110011 0x5 0x00 rd = rs1 >> rs2

sra Shift Right Arith* R 0110011 0x5 0x20 rd = rs1 >> rs2 msb-extends
slt Set Less Than R 0110011 0x2 0x00 rd = (rs1 < rs2)?1:0

sltu Set Less Than (U) R 0110011 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 0x0 rd = rs1 + imm

xori XOR Immediate I 0010011 0x4 rd = rs1 ˆ imm

ori OR Immediate I 0010011 0x6 rd = rs1 | imm

andi AND Immediate I 0010011 0x7 rd = rs1 & imm

slli Shift Left Logical Imm I 0010011 0x1 imm[5:11]=0x00 rd = rs1 << imm[0:4]

srli Shift Right Logical Imm I 0010011 0x5 imm[5:11]=0x00 rd = rs1 >> imm[0:4]

srai Shift Right Arith Imm I 0010011 0x5 imm[5:11]=0x20 rd = rs1 >> imm[0:4] msb-extends
slti Set Less Than Imm I 0010011 0x2 rd = (rs1 < imm)?1:0

sltiu Set Less Than Imm (U) I 0010011 0x3 rd = (rs1 < imm)?1:0 zero-extends
lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]

lh Load Half I 0000011 0x1 rd = M[rs1+imm][0:15]

lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]

lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
lhu Load Half (U) I 0000011 0x5 rd = M[rs1+imm][0:15] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]

sh Store Half S 0100011 0x1 M[rs1+imm][0:15] = rs2[0:15]

sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm

bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm

blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm

bge Branch � B 1100011 0x5 if(rs1 >= rs2) PC += imm

bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch � (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm

jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12

auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

ecall Environment Call I 1110011 0x0 imm=0x0 Transfer control to OS

ebreak Environment Break I 1110011 0x0 imm=0x1 Transfer control to debugger

1

18

RISC-V Reference

RISC-V Instruction Set

Core Instruction Formats
31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

RV32I Base Integer Instructions
Name FMT Note

add ADD R 0110011 0x0 0x00 rd = rs1 + rs2

sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2

xor XOR R 0110011 0x4 0x00 rd = rs1 ˆ rs2

or OR R 0110011 0x6 0x00 rd = rs1 | rs2

and AND R 0110011 0x7 0x00 rd = rs1 & rs2

sll Shift Left Logical R 0110011 0x1 0x00 rd = rs1 << rs2

srl Shift Right Logical R 0110011 0x5 0x00 rd = rs1 >> rs2

sra Shift Right Arith* R 0110011 0x5 0x20 rd = rs1 >> rs2 msb-extends
slt Set Less Than R 0110011 0x2 0x00 rd = (rs1 < rs2)?1:0

sltu Set Less Than (U) R 0110011 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 0x0 rd = rs1 + imm

xori XOR Immediate I 0010011 0x4 rd = rs1 ˆ imm

ori OR Immediate I 0010011 0x6 rd = rs1 | imm

andi AND Immediate I 0010011 0x7 rd = rs1 & imm

slli Shift Left Logical Imm I 0010011 0x1 imm[5:11]=0x00 rd = rs1 << imm[0:4]

srli Shift Right Logical Imm I 0010011 0x5 imm[5:11]=0x00 rd = rs1 >> imm[0:4]

srai Shift Right Arith Imm I 0010011 0x5 imm[5:11]=0x20 rd = rs1 >> imm[0:4] msb-extends
slti Set Less Than Imm I 0010011 0x2 rd = (rs1 < imm)?1:0

sltiu Set Less Than Imm (U) I 0010011 0x3 rd = (rs1 < imm)?1:0 zero-extends
lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]

lh Load Half I 0000011 0x1 rd = M[rs1+imm][0:15]

lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]

lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
lhu Load Half (U) I 0000011 0x5 rd = M[rs1+imm][0:15] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]

sh Store Half S 0100011 0x1 M[rs1+imm][0:15] = rs2[0:15]

sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm

bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm

blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm

bge Branch � B 1100011 0x5 if(rs1 >= rs2) PC += imm

bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch � (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm

jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12

auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

ecall Environment Call I 1110011 0x0 imm=0x0 Transfer control to OS

ebreak Environment Break I 1110011 0x0 imm=0x1 Transfer control to debugger

1

19

RISC-V ISA Extensions

• Multiply and divide RV32M
• Atomic RV32A
• Float/Double RV32F/D
– adds f0-f31 regs., fp CSR

• Bit (B), Vector (V), ...

• CSR, Fence, ECALL instructions
• RV32C Compressed Extension
• RV32E (16 registers)
• 64-bit ISA (RV64I)
• 128-bit ISA (RV128I)

5 Ways to modify a RISC-V Based Design

3
Customize your RISC-V ISA

37

20

What’s Different About RISC-V?

• Simple
– Smaller than other commercial ISAs

• Clean-slate design
– Clear separation between user and privileged ISA
– Avoids microarchitecture or technology-dependent features

• A modular ISA designed for extensibility/specialization
– Small standard base ISA, with multiple standard extensions
– Sparse and variable-length instruction encoding for vast opcode space

• Stable
– Base and standard extensions are frozen
– Additions via optional extensions, not new versions

• Community designed
– With leading industry/academic experts and software developers

21

Why a new ISA?

• Frozen standards are stable forever
• Designed to be extensible

– Microcontroller to supercomputer
• RISC-V Foundation now controls standard: riscv.org

– Over 400 members: companies, universities and more
• Freedom to leverage open-source implementations

– BOOM, Rocket, PULP, and many more
• Open-source compilers and operating systems

RISC-V: Open Source Hardware (that’s practical)

● People Build Open Source Cores & Platforms

● And get to use an open source compiler

● And get to run an open source OS

● And get to run a bunch of Open Source Apps

29

RISC-V: Open Source Hardware (that’s practical)

● People Build Open Source Cores & Platforms

● And get to use an open source compiler

● And get to run an open source OS

● And get to run a bunch of Open Source Apps

29

RISC-V: Open Source Hardware (that’s practical)

● People Build Open Source Cores & Platforms

● And get to use an open source compiler

● And get to run an open source OS

● And get to run a bunch of Open Source Apps

29

RISC-V: Open Source Hardware (that’s practical)

● People Build Open Source Cores & Platforms

● And get to use an open source compiler

● And get to run an open source OS

● And get to run a bunch of Open Source Apps

29

RISC-V: Open Source Hardware (that’s practical)

● People Build Open Source Cores & Platforms

● And get to use an open source compiler

● And get to run an open source OS

● And get to run a bunch of Open Source Apps

29

RISC-V: Open Source Hardware (that’s practical)

● People Build Open Source Cores & Platforms

● And get to use an open source compiler

● And get to run an open source OS

● And get to run a bunch of Open Source Apps

29

RISC-V: Open Source Hardware (that’s practical)

● People Build Open Source Cores & Platforms

● And get to use an open source compiler

● And get to run an open source OS

● And get to run a bunch of Open Source Apps

29

22

Why a new ISA? (Industry and World)

• Companies like Nvidia and Western Digital will ship millions of
devices with RISC-V

• Avoid ARM licensing fees

• European sovereignty
– European Processor Initiative
– EU roadmap for open source hardware, software and RISC-V Technologies
– EU Chip Act

• Strong interest from chipmakers in China

23

RISC-V Ecosystem
RISC-V Ecosystem

…
…

… …

21

Open-source HardwareStatement of Principles:

Hardware whose design is
made publicly available so
that anyone can study,
modify, distribute, make,
and sell the design or
hardware based on that design

25

Open-source Hardware

• Hardware whose design is made publicly
available so that anyone can study,
modify, distribute, make, and sell the
design or hardware based on that design

RISC-V == open-source hardware?
• No!
• But it allows open-source HW
• Or closed source, or a mixture

26

Solderpad Hardware License 2.1
• A permissive open hardware license

• Based on, and acts as an exception to, Apache-2.0

• SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1

• Covers physical hardware as well as open silicon and gateware

• Modifies, clarifies and extends various Apache definitions, and the scope of rights to explicitly
cover hardware

• Not specifically OSI approved, but we know it falls within the OSI definition of “open source”
because any licensee can treat as plain Apache-2.0

• http://solderpad.org/licenses/SHL-2.1/
17

27

Examples of Open-source RISC-V Cores

• Rocket Chip/SoC Generator 🚀 (UC Berkeley)
• Berkeley Out-of-Order Machine (BOOM)

• Pulp platform, Ariane (ETHZ)
• CV32E4x, CV32Ax, CV64Ax

• VexRiscv: 32-bit Linux Capable RISC-V CPU

• And many more to build an SoC

Outline

• OpenHW Group Overview
• Brief History of Open Source SW (OSS)
• OpenHW ~ 2 Years Later – Lessons Learned

• Lesson 1 – Permissive Use
• Lesson 2 – IP Quality
• Lesson 3 – Roadmap & Ecosystem

• Summary

May 2022 2© OpenHW Group

● lowRISC is a not-for-profit organisation whose goal
is to produce a fully open source System-on-Chip
(SoC) in volume

– “We will produce a SoC design to populate a low-cost
community development board and to act as an ideal
starting point for derivative open-source and
commercial designs”

● OpenTitan project with Google
– Announcing OpenTitan, the First Transparent Silicon Root of Trust

● LiteX used to build cores, create SoCs and full
FPGA designs.

● LiteX is based on Migen

● Migen lets you do FPGA design in Python!

● https://github.com/enjoy-digital/litex

● LibreCores

– Project of the FOSSi Foundation

– “gateway to free and open source digital
designs and other components that you can
use and re-use in your digital designs”

– “advances the idea of OpenCores.org”

28

Open Source Hardware: What Else is Needed?

• Put it on open-source FPGAs?
– SymbiFlow (now F4PGA) a fully open source

toolchain for the development of FPGAs
• open-source or commercial FPGAs

• Design your chip only with open-source
CAD tools?
– Yosys/OpenROAD

• Build your chip in an open-source fab?

29

More Cool Things: FPGA

• Cool thing for computer architect is
tuning the core

• But
– using simulator is hard and slow
– it takes weeks/months/money to build a

new chip

• FPGA is a piece of hardware that
can be programmed (configured)

A short interlude on FPGA!

31

Field Programmable Gate Array (FPGA)

>100MB RAM blocks

>4K Multipliers/Adders

>2M Configurable Logic Blocks

32

Field Programmable Gate Array (FPGA)

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

6-LUT
BLE

33

The Program is the Configuration

Chapter 2 Controllers for Wireless Sensor Network Nodes 21

FSM N NCLB MCW Lav

abs 5 50 3 3.55
Crc8 6 84 4 4.80

receiveData 6 94 4 4.58
Crc16 7 143 5 7.25

firBasic 7 217 7 7.89
calcNeighbor 8 266 7 8.05

Table 2.1: Resource utilization NCLB , minimum channel width (MCW) and average
interconnection length (Lav) required for FSMs on eFPGA-like array.

descriptions of the FSMs were obtained from the work of [33]. The table shows the num-

ber of CLBs (NCLB) and minimum channel width (MCW) required for implementation

of each FSM with N state register bits along with average length of an interconnection

segment in terms of number of CLBs spanned (Lav). Clearly for the targeted eFPGA

architecture with channel width of 4, only the first three FSMs listed in the table can

be mapped whereas the last three FSMs face constraints with respect to channel width,

although the number of CLBs are sufficient for logic function mapping. This reinforces

a well known contention that in a FPGA, the complexity of interconnection network for

signal routing creates a bottleneck as the complexity of logic circuit increases [50]. To

proceed with a study of resource utilization and power estimation, the architecture is

scaled to accommodate larger FSMs of Table 2.1. A visual representation of interconnec-

tion networks required for two FSMs in an eFPGA-like architecture with required MCW

as obtained from a mapping and PnR with VTR tool is shown in Fig. 2.9.

(a) abs (b) calcNeighbor

Figure 2.9: Interconnection network complexities in mappings of two FSMs.

34

The Program is the Configuration
24 Chapter 2 Controllers for Wireless Sensor Network Nodes

(a) Crc16 (b) calcNeighbor

Figure 2.10: Compact placement and routing in mappings of two FSMs.

2. The dynamic energy due to routing lines along clock networks and static energy of

buffers for both routing channels and clock networks are not considered.

3. The dynamic energy due to reconfiguration of eFPGA by shifting configuration bits

in a scan chain fashion is also neglected. This is due to the fact that the eFPGA

is usually programmed to be in a particular configuration for a long time so that

average power can be considered small.

4. The bias and transistor size dependent leakage current of NMOS and PMOS tran-

sistors in switches are ignored. Such currents are mostly sneak currents and are

negligible in the context of transmission gates.

5. Spatial independence of dynamic energy consumption in mapped CLBs across the

eFPGA is assumed. As will be shown in the next subsection dynamic energy con-

sumption within a LUT is significantly lower than that of interconnection network

and will have negligible impact on estimation of overall energy consumption [54].

The energy consumed due to transition of signal states in the logic of CLB and metal

lines of the interconnection network due to changing inputs and outputs is given by

EdynFSM ,av = NCLBEdynCLB ,av + EdynSW ,av (2.3)

where EdynFSM ,av, EdynCLB ,av, EdynSW ,av denote average energy consumed in all the blocks

used, one CLB and the switching network respectively. In order to estimate EdynCLB ,av

10000 random inputs are applied to CLB logic and switching capacitance is determined

35

Space-Time Computation

Ecole Thématique ARCHI 09 – Pleumeur-Bodou Jeudi 2 avril 2009

Lilian Bossuet - lilian.bossuet@ims-bordeaux.fr 1

Lilian BossuetLilian Bossuet

Architecture et utilisation des FPGAArchitecture et utilisation des FPGA

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou1

Architecture et utilisation des FPGAArchitecture et utilisation des FPGA
évolutions et tendances évolutions et tendances

Ecole Thématique ARCHI 09 – Pleumeur-Bodou

Jeudi 2 avril 2009

XilinxXilinx VirtexVirtex 6 6 –– 40 nm FPGA40 nm FPGA

�� Technologie 40 nmTechnologie 40 nm
�� Fréquence maximale d’utilisation 600 MHzFréquence maximale d’utilisation 600 MHz
�� Jusqu’à 759 000 cellules logiques (LUT + bascules D)Jusqu’à 759 000 cellules logiques (LUT + bascules D)
�� Jusqu’à 5Mo de cellules mémoiresJusqu’à 5Mo de cellules mémoires
�� Jusqu’à 18 horloges synchroniséesJusqu’à 18 horloges synchronisées
�� Jusqu’à 2016 cellule DSP 18 bitsJusqu’à 2016 cellule DSP 18 bits
�� De 2 à 4 contrôleurs PCI/EthernetDe 2 à 4 contrôleurs PCI/Ethernet

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou2

�� Jusqu’à 1200 entrées/sortiesJusqu’à 1200 entrées/sorties
�� Taille de puce max 42,5² mmTaille de puce max 42,5² mm

PlanPlan

�� Introduction, considérations technologiques et économiquesIntroduction, considérations technologiques et économiques

�� Conception technologique des FPGAConception technologique des FPGA

�� Architectures et ressources embarquéesArchitectures et ressources embarquées

�� Utilisation et applicationUtilisation et application

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou3

�� Utilisation et applicationUtilisation et application

�� Vers le futur …Vers le futur …

�� Conclusion et référencesConclusion et références

PlanPlan

�� Introduction, considérations technologiques et économiquesIntroduction, considérations technologiques et économiques

��

��

��

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou4

��

��

��

FPGA : Field Programmable Gate Array

En français :

Composant, constitué d’un ensemble de ressources configurables logiques,
arithmétiques et de mémorisation pouvant être mises en relation par un

DéfinitionDéfinition

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou5

arithmétiques et de mémorisation pouvant être mises en relation par un
réseau d’interconnexions configurables

Technologies de configuration : antifuse, cmos-antifuse, flash, SRAM

FPGA = circuit matériel FPGA = circuit matériel reconfigurablereconfigurable

architecture physique
reconfigurable

éléments
configurables de

calculs et mémoires
réseaux

configurables de
connexions

architecture logique 1

configuration 1

application 1

architecture logique 2

configuration 2

application 2

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou6

configuration

reconfiguration

for(i=1; i<length; i++) {
if (max < T[i]) {

max = T[i];
}

}

Ecole Thématique ARCHI 09 – Pleumeur-Bodou Jeudi 2 avril 2009

Lilian Bossuet - lilian.bossuet@ims-bordeaux.fr 1

Lilian BossuetLilian Bossuet

Architecture et utilisation des FPGAArchitecture et utilisation des FPGA

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou1

Architecture et utilisation des FPGAArchitecture et utilisation des FPGA
évolutions et tendances évolutions et tendances

Ecole Thématique ARCHI 09 – Pleumeur-Bodou

Jeudi 2 avril 2009

XilinxXilinx VirtexVirtex 6 6 –– 40 nm FPGA40 nm FPGA

�� Technologie 40 nmTechnologie 40 nm
�� Fréquence maximale d’utilisation 600 MHzFréquence maximale d’utilisation 600 MHz
�� Jusqu’à 759 000 cellules logiques (LUT + bascules D)Jusqu’à 759 000 cellules logiques (LUT + bascules D)
�� Jusqu’à 5Mo de cellules mémoiresJusqu’à 5Mo de cellules mémoires
�� Jusqu’à 18 horloges synchroniséesJusqu’à 18 horloges synchronisées
�� Jusqu’à 2016 cellule DSP 18 bitsJusqu’à 2016 cellule DSP 18 bits
�� De 2 à 4 contrôleurs PCI/EthernetDe 2 à 4 contrôleurs PCI/Ethernet

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou2

�� Jusqu’à 1200 entrées/sortiesJusqu’à 1200 entrées/sorties
�� Taille de puce max 42,5² mmTaille de puce max 42,5² mm

PlanPlan

�� Introduction, considérations technologiques et économiquesIntroduction, considérations technologiques et économiques

�� Conception technologique des FPGAConception technologique des FPGA

�� Architectures et ressources embarquéesArchitectures et ressources embarquées

�� Utilisation et applicationUtilisation et application

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou3

�� Utilisation et applicationUtilisation et application

�� Vers le futur …Vers le futur …

�� Conclusion et référencesConclusion et références

PlanPlan

�� Introduction, considérations technologiques et économiquesIntroduction, considérations technologiques et économiques

��

��

��

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou4

��

��

��

FPGA : Field Programmable Gate Array

En français :

Composant, constitué d’un ensemble de ressources configurables logiques,
arithmétiques et de mémorisation pouvant être mises en relation par un

DéfinitionDéfinition

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou5

arithmétiques et de mémorisation pouvant être mises en relation par un
réseau d’interconnexions configurables

Technologies de configuration : antifuse, cmos-antifuse, flash, SRAM

FPGA = circuit matériel FPGA = circuit matériel reconfigurablereconfigurable

architecture physique
reconfigurable

éléments
configurables de

calculs et mémoires
réseaux

configurables de
connexions

architecture logique 1

configuration 1

application 1

architecture logique 2

configuration 2

application 2

Laboratoire LESTER – 18 janvier 2007Guy GogniatArchitecture et utilisation des FPGA - Lilian Bossuet - ARCHI 2009 - Pleumeur Bodou6

configuration

reconfiguration

for(i=1; i<N; i++) {
for(j=1; j<M; j++) {

y[i][j]+=x[i][j]*h[j][i]
}

}

36

FPGA Acceleration

• FPGAs can run multiple tasks in parallel

• Heterogeneous architectures (CPU+FPGA(+GPU(+NPU)))

–HARDIESSE

37

FPGA?

• Facts
– Intel acquisition of Altera (2016)
– AMD acquisition of Xilinx (2022)
– Amazon EC2/F1 instance

• Up to 8 Xilinx UltraScale+ FPGA devices

– Microsoft Unveils FPGAs to Accelerate Bing

• Solutions
– Overlays (e.g., DNN accelerators)
– High-level synthesis (jointly compile the code and the hardware)
– New languages for hardware design

• Chisel, Spinal, Silice, C++, SystemC

38

High-Level Synthesis of HW Accelerators

• C/C++ to specialized hardware
void accumulate(int din[2][4], int dout[2]){
int acc=0;
ROW:for(int i=0;i<2;i++){
if (acc>MAX) acc = MAX;
COL:for(int j=0;j<4;j++){
acc += din[i][j];

}
dout[i] = acc;

}
}

39

High-Level Synthesis of HW Accelerators

• C/C++ to specialized hardware
void accumulate(int din[2][4], int dout[2]){
int acc=0;
ROW:for(int i=0;i<2;i++){
if (acc>MAX) acc = MAX;
COL:for(int j=0;j<4;j++){
acc += din[i][j];

}
dout[i] = acc;

}
}

40

Fast Design Space Exploration

High)Level)Synthesis)
In)this)talk

17'

•  Focus)on)data)path)design

–  Achieving)high)performance

Cool Research with RISC-V
and open-source hardware

● RISC-V: Free and Open RISC Instruction Set
Arch

– “new instruction set architecture (ISA) that was
originally designed to support computer architecture
research and education and is now set to become a
standard open architecture for industry”

42

5 Ways to Modify a RISC-V Based Design

1. Tune the CPU
• 32 bits? 64 bits? 128 bits?
• Cache sizes
• Branch Prediction
• Pipeline Depth

2. Tweak the CPU
• Skip multiplications by zero
– performance? side channel?

• 12-bit reduced-precision
floating point hardware

3. Customize your RISC-V ISA
• 12-bit float
• FFT
• GEMM

4. Modify the platform
• Add deep learning acceleration

5. Replace your CPU
• Choose an ISA
• Pick or design an implementation

5 Ways to modify a RISC-V Based Design

3
Customize your RISC-V ISA

37

43

Comet: What You Simulate is What You Synthesize

• Comet is designed from a single C++ specification using
High-Level Synthesis (HLS)

RegFile

In
st

ru
ct

io
n

Ca
ch

e

Branch Unit

Fe
tc

h

De
co

de AL
U

Data
Cache

M
em

Fetch Decode Execute Memory Write Back

Forward– Hardware == Simulator

• As efficient as RTL
• Very fast simulator

– ~20 Millions cycles per sec.

• Easy to tune
• Leverages SW dev. techniques

[IEEE/ACM ICCAD’19]

44

Hardware Security

• Key message here is reproducible research

• Side channel attacks (SCA) and fault attacks (FA)
– physical, microarchitectural, software, hardware

Conclusion

Merci !

Des questions ?

© Inria / Photo C. Morel

R. Lashermes RISC-V 8 mars 2022 44 / 44

45

Hardware Security

• Build or tune a RISC-V core to demonstrate a technique to
improve robustness to SCA or FA
– e.g., Branch History Table (BHT) as a covert channel

• M. Escouteloup (PhD), R. Lashermes
• Results can be reproduced (build core, build binaries with patched gcc, core simulation)

Vulnerable Immune

46

Hardware Security: Roadmap

• Secured in-order/out-of-order RISC-V cores

• Security-oriented ISA extensions
– Several working groups at the RISC-V foundation

– Inria (R. Lashermes) is co-leading a Working Group at RISC-V International
on security extensions
• Microarchitecture Side Channels Special Interest Group (uSC SIG)
–RISC-V strategy to prevent microarchitectural information leakage, with an

initial focus on timing side channels

47

RISC-V: The ISA of choice for researchers hackers

RISC-V makes it easy to focus on the cool part of your project
25

Everlasting Architectures
Can we design a processor that can live for
decades?

49

Time (years)0.01 0.1 1 10 100

Fa
ilu

re
-in

-T
im

e
(F

IT
)

1 FIT = 1 failure in 109 device hours

10

100

1000

Early-Life
Failures

Chip Reliability Threats

• Defects in the HW
– Manufacturing defects

• Radiation
– Particles hit your chip
– Space, Avionics, Terrestrial

• Wear-out (aging)

• Advanced (or emerging)
technologies
– Increased failure rate
– Early wear-out

49/17[Ram19] H. Radamson et al. “Miniaturization of CMOS”, Micromachines, 2019
[Dre10] R. Dreslinski et al. “Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits.” IEEE proceedings, 2010

Can we extend chip lifetime?

130nm

Normal
Lifetime Wear-out

28nm

65nm

early wear-out

Increase of failures

n+ n+L

n+ n+L

s

50

How Old My Transistors can Live?

• Chip lifetime requirements
– e.g., 10-15 years (automotive), 7-10 y (processors), >10 y (data-centers)
– under temperature and usage (workloads) conditions

• Transistor Aging
– Gradually causes device to become slower

• static/dynamic stress
• temperature
• ...

– Finally may results in permanent faults

G

S

D

n+ n+L

HCI: Hot Carrier Injection
NBTI: Negative Bias Temperature Instability
PV: Process Variation

critical paths in a processor. First, however, we summarize the

factors that induce aging.

3.1 Factors that Induce Aging

From Equations 2 and 4, we see that ∆Vt due to NBTI and

HCI follows a power law with time (∆Vt NBTI ∝ t0.25 and

∆Vt HCI ∝ t0.5). Since the exponents of t are less than one,

∆Vt increases rapidly first and then more slowly — as shown in

Figure 1. In the case of NBTI, as given by Equation 3, the increase

occurs only while the transistor is under stress, and the recovery

phase brings∆Vt down at a lower rate than it went up.

Time

V t
h

Time

V t
h

RecoveryStress Stress Recovery

(a) NBTI (b) HCI

Figure 1: Shape of the change in Vt due to NBTI (a) and

HCI (b).

From Equations 2 and 4, we note that∆Vt increases exponen-

tially with (Vdd − Vt) in both NBTI and HCI aging. Moreover,

∆Vt also increases rapidly with T— exponentially in NBTI and

linearly in HCI. Finally,∆Vt in HCI also depends linearly on the

activity factor α and the frequency f. These dependences are sum-
marized in Table 1.

Factor Impact

NBTI HCI

Vdd − Vt exponential exponential

T exponential linear

α, f — linear

Table 1: Impact of key factors on aging.

NBTI-induced aging also depends on the duration of the pe-

riod under stress. What matters is the fraction of the time that the

PMOS transistor is stressed, rather than the timing of the inter-

leaving of the stress and recovery periods [16].

3.2 Modeling the Impact of Aging on Critical

Paths

We estimate the microarchitectural impact of aging by model-

ing its effect on a processor’s critical paths. Consider first a single

transistor. Its switching delay Ts is computed using Equation 1,

where Vt = Vt0 + ∆Vt, and ∆Vt is taken from Equations 3 or 4

depending on whether the transistor is PMOS or NMOS, respec-

tively. Next, we model critical paths in logic structures and in

memory structures.

A simple model of a critical path in a logic structure is a chain

of FO4 inverters. As shown in Figure 2(a), each CMOS inverter

has one transistor of each type. When we change the value of the

input of the chain, each inverter relies on one transistor to charge

or discharge its output. For example, in Figure 2(b), transistor T2

discharges node A. These transistors are, successively, of different

types — in the figure, N, P, N.

The speed at which the signal propagates along the critical path

depends primarily on the speed of the transistors that charge or

discharge the output nodes. In reality, the other transistors have

some effect, but we neglect it. Overall, therefore, we estimate the

01 10 01 10 1 0 1 0

DD

D

HCI HCI

NBTI

(a) (b)

P

N

T

T

1

2

A

Figure 2: Critical path in a logic structure.

delay of an N-FO4 critical path to be the delay of N/2 NBTI-aged

PMOS transistors plus N/2 HCI-aged NMOS transistors.

In reality, a critical path can have a completely different struc-

ture and a different ratio of PMOS to NMOS transistors. In this

case, we need to identify the number of transistors of each type

that need to be activated for the signal to propagate. Then, to com-

pute the critical path delay, we multiply the two curves in Figure 1

by the number of activated transistors of the corresponding type,

and add up the results.

In all cases, the curve resulting from combining the NBTI and

HCI curves for the individual transistors has the general shape of

a power law with an exponent less than one. As a result, it will

increase quickly first and then flatten out toward the end.

We model a critical path in a memory structure to be the de-

coder of the structure, wordline, pass transistor, bitline, and sense

amplifier. We use CACTI [33] to estimate the number of cycles

taken by the critical path without aging, and the fraction of the

time taken by each component. To add the effect of aging, we

again use the NBTI and HCI aging of the transistors present in

the path, and assume no aging for the wires.

Finally, the NBTI and HCI effects are such that similar nomi-

nal devices under similar conditions may age at slightly different

rates. Consequently, the aging equations 3 and 4 have a statisti-

cal component. This statistical component has been studied only

very recently [14], and there is no accepted model. Moreover,

it appears that this component is randomly distributed, since its

effect comes from the finite number of Si-H bonds in the transis-

tor channel. As a result, its effect tends to average out over the

several transistors of a critical path. For these two reasons, we

neglect this component in our analysis. Any uncertainty induced

by this component will be included in the guardbands selected by

the designer.

4 Hiding, Slowing Down, and
Consolidating Aging in Multicores

We now propose how to limit the effect of aging. First, we

present the Facelift framework to understand the benefits of lim-

iting aging. Then, we examine how to hide aging, slow it down,

and configure a processor for a shorter service life.

4.1 Facelift Framework

Consider a processor that, when it is first used, has a critical-

path delay equal to C0 (Figure 3(a)). As the processor is used, the

critical path slows down due to aging. After a period t=Y0 equal

to the service life for which the processor was designed (e.g., 7

years), aging has caused the critical path delay to reach τ0. Con-

sequently, for the processor to be usable for the duration of its ex-

pected service life, it needs to be clocked at a frequency no higher

than f0 = 1/τ0. Moreover, the designers need to add a guardband

G0 = τ0 − C0 that is gradually consumed (Figure 3(a)).

The same effect is shown in a different way in Figure 3(b). In

the figure, the guardband is given as a fraction S0 of C0.

131

Authorized licensed use limited to: INRIA. Downloaded on September 12,2022 at 15:44:16 UTC from IEEE Xplore. Restrictions apply.

Frequency
Activity
Temperature

Static stress

51

Solutions and Challenges

• Guardbands to absorb any increase in logic path delay
– Worst-case speed and voltage margins

• Challenge: worst-case guardbands pessimistic and too
expensive for current and future chips

• or lifetime is significantly reduced...
• and probability of permanent faults increases with

lifetime and technology scaling

Process Variation

52

Everlasting Architectures?

• Architectures can live longer if they are healed
• Need for
1) performance degradation estimation

– e.g., timing error analysis, on-line test
2) permanent fault detection
3) self-healing mechanisms

– Core-level: e.g., reduces #issues in a VLIW
– System-level: e.g., reduces #cores
– Hardware reconfiguration, approximations, etc.
– Aging-driven scheduling
– JIT compilation/parallelization

53

Conclusion

• RISC-V: a standardized, free and open ISA
– The Linux of hardware

• RISC-V is not a research topic but an enabler

• Open the box!

• (Inria is member of RISC-V International)

54

What’s Hot in Computer Architecture?

• Accelerating Deep Learning of course...
– Reduced-precision, sparse computations

• Memory still scales
– Peta-byte of memory
– But lots of energy to access

• In/Near Memory Computing
– Remove the Von-Neuman bottleneck

55

Iron law of processor performance

!"#$
%&'(&)# = *+,-&./-"'+,

%&'(&)# × 01'/203/1$
*+,-&./-"'+×

!"#$
01'/203/1$

(2) depends on code, compiler and ISA
(3) depends on ISA and microarchitecture
(4) depends on microarchitecture and technology
(1) as low as possible

– efficient code, compiler, microarchitecture
– given an ISA and a technology

(1) (2) (3) (4)

56

Energy Efficiency

• Power budget is fixed
• How to increase energy efficiency while maintaining

performance?
– Specialized hardware that computes at the right (lowest) precision

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑆𝑒𝑐𝑜𝑛𝑑

𝐽𝑜𝑢𝑙𝑒𝑠
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑤𝑒𝑟 = ×

Performance
e.g., Tera op/s (TOPS)

Energy
Efficiency
e.g., TOPS/Watt

Opportunities for computer architecture
research with open-source hardware

The case of RISC-V

Olivier Sentieys
Univ. Rennes, Inria, Irisa, Taran
olivier.sentieys@inria.fr

Lignes connectiques de processeur.
Bouclier de protection (résistance).
Masque (visage) celtique.

Typographie moderne.

PROP. 5

mailto:olivier.sentieys@inria.fr

