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Key Messages

This talk is about computer architecture

— A key enabler for research and innovation in many fields of CS

— Do we still need computer architecture (and compiler) research?
* |s Moore’s law really ending?

— No more free lunch
— A new golden age for computer architecture

RISC-V: a standardized, free and open ISA

— The Linux of hardware?
RISC-V and open hardware

— Key enablers for computer architecture research



Silicon Technology Evolution

* Now several billions or transistors!
— Apple M1: 33 B.Tr, 5nm,
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Dark Silicon

A short interlude on Dark Silicon

and the several walls of computer architectures



Technology Scaling
. -

28 nm

Classical (Dennard’s) scaling

Device count S2 |C ,

Device frequency |S Core; 1/+/2 orei
Capacitance, Vdd | 1/S -

Device power 1/52

Utilization 1 50W@1.4f

100W@f



End of Dennard’s Scaling

* No more free lunch! Energy efficiency is not

scaling along with integration capacity (since ~2016, 28nm)

Leakage limited scaling
Device count S? Core; 1/\/2 Corg;
Device frequency |~S
Device power (cap)| 1/S
Device power (Vy,)| ~1
Utilization 1/S2

100W@1.4f
100W@f (w/o) leakage

More Computing Power?
More Electrical Power...
or Domain-Specific Computers



Silicon Technology Evolution

* Now several billions or tre,;

— Apple M1: 33 B.Tr, 5nm, 2.1¢° |

10°

No more free lunch!

48 Years of Microprocessor Trend Data

Year

— No more scaling of performance and energy with technology
— End of technology (Moore’s law) scaling is near
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp
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RISC
Back to RISC-V

Instruction Set Architecture



Instruction Set Architecture (I1SA)

* How does the compiler know what instructions the chip

understands? ; .
* Instruction Set Architecture Applications

— abstract model of a computer Operating

— interface between HW and SW ISA _Sff_t"_"i"f__‘__sjit_ein____‘

— Examples: x86 (Intel/AMD) and ARM Hardware

* Both are proprietary and need commercial licensing

* Not only defines instructions, but also

— supported data types, registers (number, size), size of addres
address translation mechanisms, memory management, etc.

s space,
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Instruction Set Architecture (I1SA)

* Agreeing on the ISA gets you lots of good software:
— Tools that speak the language
— Compilers, assemblers, debuggers
— Emulators, simulators
— Documentation, programmer’s guides, application notes...

An ISA is a Standard

11



Instruction Set Architecture (I1SA)

e # microarchitecture, which is the set of processor design
techniques used, in a particular processor, to implement the

instruction set
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How many ISAs does a chip speak?

* >dozen ISAs on some SoCs — each
with unique SW stack
— Application processor (e.g. ARM)
— Graphics proc.
— Image proc.
— Audio proc.
— Radio proc.
— Security proc.

SoC: System on a Chip

" NVIDIA Tegra
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How many ISAs does a chip speak?

Do we need all these different ISAs?
* Must they be proprietary?

* Must they keep disappearing?

IP: Intellectual Property
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RISC-V: a Free and Open ISA

* “new instruction set architecture (ISA) that was originally
designed to support computer architecture research and
education and is now set to become a standard open
architecture for industry”

* More than 12 billions RISC-V cores
deployed for profit! : ‘
—expected to double this year and in 2023 RISC

15



RISC-V: a Free and Open ISA

RISC project originally leaded by David Patterson at Berkeley
during the 80s

— MIPS at Standford in the same years
RISC-V is the 5t generation of RISC ISA (2010)
May 2014, released frozen base user spec

RISC-V Foundation created to maintain it as a free and open
standard

RISC-V: the instruction set for everything?

16



RISC-V Standard Base ISA (RV32l)

31 27 26 25 24 20 19 15 14 12 11 7
funct7 rs2 rsl funct3 rd opcode
imm[11:0] rsl funct3 rd opcode
imm[11:5] rs2 rsl funct3 imm/[4:0] opcode
imm[12]10:5] rs2 rsl funct3 | imm[4:1]|11] opcode
imm[31:12] rd opcode
imm[20]10:1|11|19:12] rd opcode

32-but fixed-width, naturally aligned instructions

31 registers x1-x31, plus x0 zero reg.

rd/rs1/

in fixed location, no implicit registers

load/store, integer arithmetic, branch/jump

Control and Status Registers (CSRs)

R-type
I-type

S-type
B-type
U-type
J-type
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Inst Name FMT | Opcode | funct3 | funct7 Description (C) Note

add ADD R 0110011 ox0 0x00 rd = rs1 + rs2

sub SUB R 0110011 | 0x0 0x20 rd = rs1 - rs2

xor XOR R 0110011 | ox4 0x00 rd = rs1 " rs2

or OR R 0110011 | 0x6 0x00 rd = rsl | rs2

and AND R 0110011 | Ox7 0x00 rd = rs1 & rs2

sll Shift Left Logical R 0110011 | ox1 0x00 rd = rsl << rs2

srl Shift Right Logical R 0110011 | 0x5 0x00 rd = rs1 > rs2

sra Shift Right Arith* R 0110011 | 0x5 0x20 rd = rs1 >> rs2 msb-extends
slt Set Less Than R 0110011 | ox2 0x00 rd = (rs1 < rs2)?1:0

sltu Set Less Than (U) R 0110011 | 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate I 0010011 | 0x0 rd = rs1 + imm

xori XOR Immediate I 0010011 | 0x4 rd = rs1 " imm

ori OR Immediate I 0010011 | 0x6 rd = rs1 | imm

andi AND Immediate I 0010011 | Ox7 rd = rs1 & imm

slli Shift Left Logical Imm I 0010011 | ox1 imm[5:11]=0%x00 | rd = rs1 << imm[0:4]

srli Shift Right Logical Imm I 0010011 | 0x5 imm[5:11]=0x00 | rd = rs1 >> imm[0:4]

srai Shift Right Arith Imm I 0010011 | 0x5 imm[5:11]1=0x20 | rd = rs1 >> imm[0:4] msb-extends
slti Set Less Than Imm I 0010011 | Ox2 rd = (rs1 < imm)?1:0

sltiu Set Less Than Imm (U) I 0010011 | 0x3 rd = (rs1 < imm)?1:0 zero-extends
1b Load Byte I 0000011 | 0x0 rd = Mlrs1+imm][@:7]

1h Load Half I 0000011 | ox1 rd = M[rs1+imm][@:15]

1w Load Word I 0000011 | 0x2 rd = M[rs1+imm][@:31]

1bu Load Byte (U) I 0000011 | ox4 rd = M[rs1+imm][Q:7] zero-extends
lhu Load Half (U) I 0000011 | 0x5 rd = M[rs1+imm][0:15] zero-extends
sb Store Byte S 0100011 | 0x0 MLrs1+imm][@:7] = rs2[0:7]

sh Store Half S 0100011 | Ox1 M[rs1+imm][@:15] = rs2[0:15]

sw Store Word S 0100011 | Ox2 MLrs1+imm][@:31] = rs2[0:31]

beq Branch == B 1100011 | 0x0 if(rs1 == rs2) PC += imm

bne Branch != B 1100011 | ox1 if(rs1 != rs2) PC += imm

blt Branch < B 1100011 | ox4 if(rs1 < rs2) PC += imm

bge Branch > B 1100011 | 0x5 if(rs1 >= rs2) PC += imm

bltu Branch < (U) B 1100011 | 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch > (U) B 1100011 | ox7 if(rs1 >= rs2) PC += imm zero-extends
jal Jump And Link J 1101111 rd = PC+4; PC += imm

jalr Jump And Link Reg I 1100111 | 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12

auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

ecall Environment Call I 1110011 | 0x0@ imm=0x0 Transfer control to 0S

ebreak | Environment Break I 1110011 | 0x0 imm=0x1 Transfer control to debugger
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RISC-V ISA Extensions

* Multiply and divide RV32M * CSR, Fence, ECALL instructions
* Atomic RV32A * RV32C Compressed Extension
* Float/Double RV32F/D * RV32E (16 registers)
— adds fO-f31 regs., fp CSR * 64-bit ISA (RV64I)
* Bit (B), Vector (V), ... « 128-bit ISA (RV128I)
Standard RV32IMAFD C“;\t,\‘/’m
Software Libraries
©
Base 2 g
RV3?| M|A]|F| D 3 Custom §
& O




What's Different About RISC-V?

Simple

— Smaller than other commercial ISAs

Clean-slate design

— Clear separation between user and privileged ISA

— Avoids microarchitecture or technology-dependent features
A modular ISA designed for extensibility/specialization

— Small standard base ISA, with multiple standard extensions
— Sparse and variable-length instruction encoding for vast opcode space

Stable

— Base and standard extensions are frozen

— Additions via optional extensions, not new versions
Community designed

— With leading industry/academic experts and software developers
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Why a new ISA?

Frozen standards are stable forever
Designed to be extensible
— Microcontroller to supercomputer

RISC-V Foundation now controls standard: riscv.org
— Over 400 members: companies, universities and more

* Freedom to leverage open-source implementations

— BOOM, Rocket, PULP, and many more
* Open-source compilers and operating systems s
0 LLVM
0 o APACHE )
V o) f?’
: o MV
dgn ‘é v <‘ "t my/new't %
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Why a new ISA? (Industry and World)

* Companies like Nvidia and Western Digital will ship millions of
devices with RISC-V

* Avoid ARM licensing fees

* European sovereignty
— European Processor Initiative

— EU roadmap for open source hardware, software and RISC-V Technologies
— EU Chip Act

e Strong interest from chipmakers in China

22



RISC-V Ecosystem

Open-source software: Commercial software:

Gcgc, binutils, glibc, Linux, BSD, Lauterbach, Segger, IAR,

LLVM, QEMU, FreeRTOS, Micrium, ExpressLogic, Ashling,
ZephyrQOS, LiteQS, SylixOs, ... Imperas, AntMicro, ...

Software

< FRI C ISA specification | Golden Model
oundation

Hardware

Open-source cores:

Rocket, BOOM, RI5CY,
Ariane, PicoRV32, Piccolo,
SCR1, Swerv, Hummingbird,

Commercial core providers: Inhouse cores:
Andes, Bluespec, Cloudbear, Nvidia, WDC, Alibaba,
Codasip, Cortus, C-Sky,

Nuclei, SiFive, Syntacore, ...

23



Open-source Hardware



Open-source Hardware

* Hardware whose design is made publicly
available so that anyone can study,
modify, distribute, make, and sell the
design or hardware based on that design

open source
RISC-V == open-source hardware? ardware

* No!
e But it allows open-source HW

* Or closed source, or a mixture
25



Solderpad Hardware License 2.1

- A permissive open hardware license
- Based on, and acts as an exception to, Apache-2.0
Foundation

- SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1

- Covers physical hardware as well as open silicon and gateware

- Modifies, clarifies and extends various Apache definitions, and the scope of rights to explicitly
cover hardware

- Not specifically OSI approved, but we know it falls within the OSI definition of “open source”
because any licensee can treat as plain Apache-2.0
N

> MOORCROFTS

CORPORATE LAW

- http://solderpad.org/licenses/SHL-2.1/




Examples of Open-source RISC-V Cores

* Rocket Chip/SoC Generator % (UC Berkeley) :ﬁ:
» Berkeley Out-of-Order Machine (BOOM) ALLIANCE

Pulp platform, Ariane (ETHZ)
CV32E4x, CV32Ax, CV64AXx

* VexRiscv: 32-bit Linux Capable RISC-V CPU

* And many more to build anSoC | 2~

"



Open Source Hardware: What Else is Needed?

e Putit on open-source FPGAs?

— SymbiFlow (now FAPGA) a fully open source =‘> Fll_ PGA

toolchain for the development of FPGAs

* open-source or commercial FPGAs

* Design your chip only with open-source
CAD tools?
— Yosys/OpenROAD

* Build your chip in an open-source fab? = skyuJater

28



More Cool Things: FPGA

* Cool thing for computer architectis | [F——.
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A short interlude on FPGA!



Field Programmable Gate Array (FPGA)
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Field Programmable Gate Array (FPGA)
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The Program is the Configuration
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The Program is the Configuration
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Space-Time Computation

for(i=1; i<length; i++) {
if (max < T[i]) {
max = T[i];

}

for(i=1; i<N; i++) {
for(j=1; j<M; j++) {
Y1103 1+=x[1][J1*h[J][1]
}

35



FPGA Acceleration

* FPGAs can run multiple tasks in parallel

* Heterogeneous architectures (CPU+FPGA(+GPU(+NPU)))

36



FPGA?

* Facts
— Intel acquisition of Altera (2016)
— AMD acquisition of Xilinx (2022)

— Amazon EC2/F1 instance
* Up to 8 Xilinx UltraScale+ FPGA devices

— Microsoft Unveils FPGAs to Accelerate Bing

e Solutions
— Overlays (e.g., DNN accelerators)
— High-level synthesis (jointly compile the code and the hardware)

— New languages for hardware design
* Chisel, Spinal, Silice, C++, SystemC

37



High-Level Synthesis of HW Accelerators

e C/C++ to specialized hardware

void accumulate(int din[2][4], int dout[2]){
int acc=0;
ROW: for(int i=0;i<2;i++){
if (acc>MAX) acc = MAX;
COL:for(int j=0;7j<4;j++){

acc += din[i][]];
din[31:0] — ™

Reg

}
dout[i] = acc; din[63:31] ‘4x1\ 3/2 [
} din[95:64] ——| \ J
i . A 8 >+
} dln[127.96]—// 0‘{\‘% [ P
3-bit i==ctrl
___ > Counter T
3-bit loop
counter 7 3-bit control logic

comparator

—~wW

ctrl



High-Level Synthesis of HW Accelerators

e C/C++ to specialized hardware

void accumulate(int din[2][4], int dout[2]){
int acc=0;
ROW: for(int i=0;i<2;i++){
if (acc>MAX) acc = MAX;
COL: for ( int j=0 i j<4 i j++ ) { Array elements Adder tree balanced
acc += dln[ l] [ j 1s ¢ by synthesis
} . din[0] r—:———z———|
dout[1i] = acc; din[4]
} din[1]
din(5]
} din[2]
din[6]
din[3] N

din[7] ( —————————— T dout[1]

32 | dout[0]

FSM
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Fast Design Space Exploration
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RISC
Cool Research with RISC-V

and open-source hardware



5 Ways to Modify a RISC-V Based Design

1. Tune the CPU 3. Customize your RISC-V ISA
32 bits? 64 bits? 128 bits? e 12-bit float e
Cache sizes * FFT van [ M| 4| F [ ©
Branch Prediction * GEMM

Pipeline Depth
4. Modify the platform

2. Tweak the CPU * Add deep learning acceleration
Skip multiplications by zero
— performance? side channel? 5. Replace your CPU
12-bit reduced-precision * Choose an ISA

floating point hardware * Pick or design an implementation



Comet: What You Simulate is What You Synthesize

 Comet is designhed from a single C++ specification using
High-Level Synthesis (HLS)

RegFile

e e

— Hardware == Simulator
e As efficient as RTL

e Very fast simulator

— ~20 Millions cycles per sec.

Instruction Cache
|
Fetch
|
L
Decode
ALU
o T
- = Mem
i |

t ol - "
Easy to tune Branch Unit [ Data
. 5 i| Cache

* Leverages SW dev. techniques ...,

! Execute ! Memory | Write Back

[IEEE/ACM ICCAD’19] | | | a3



Hardware Security

* Key message here is reproducible research

» Side channel attacks (SCA) and fault attacks (FA)
— physical, microarchitectural, software, hardware

=

SPECTRE




Hardware Security

e Build or tune a RISC-V core to demonstrate a technique to
improve robustness to SCA or FA

— e.g., Branch History Table (BHT) as a covert channel
e M. Escouteloup (PhD), R. Lashermes

* Results can be reproduced (build core, build binaries with patched gcc, core simulation)

Vulnerable Immune
120 W 120 58
100 % 100 35
80 80
: g o3
§ 0 20 § 60 20
&0 40
B} »
20 20
28 28
Q 0
0 20 40 &0 &0 100 120 0 20 40 &0 B8 10120

Trojan value Teopan vaiue
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Hardware Security: Roadmap

* Secured in-order/out-of-order RISC-V cores

* Security-oriented ISA extensions
— Several working groups at the RISC-V foundation

— Inria (R. Lashermes) is co-leading a Working Group at RISC-V International
on security extensions
* Microarchitecture Side Channels Special Interest Group (uSC SIG)

—RISC-V strategy to prevent microarchitectural information leakage, with an
initial focus on timing side channels

46



RISC-V: The ISA of choice for researehers hackers
nature

Article | Published: 28 August 2019

Modern microprocessor built from
complementary carbon nanotube
transistors

RISC-V USES CARBON

NANOTUBES

by: Al Williams

RISC-V makes it easy to focus on the cool part of your project

47



Everlasting Architectures

Can we design a processor that can live for
decades?



Chip Reliability Threats

Defects in the HW Farly-Life  Normal
. Failures Lifetime  Wear-out
— Manufacturing defects 4

Radiation
— Particles hit your chip
— Space, Avionics, Terrestrial

Wear-out (aging)

[y
o
o
o

|
|
|
|
|
|
|
|
100 |
|

Failure-in-Time (FIT)

Advanced (or emerging)
technologies @

— Increased failure rate

|
10 ' -
001 01 1 10 100 Time (years)

1 FIT = 1 failure in 10° device hours

— Early wear-out

Can we extend chip lifetime?



How Old My Transistors can Live?

e Chip lifetime requirements
—e.g., 10-15 years (automotive), 7-10 y (processors), >10 y (data-centers)
— under temperature and usage (workloads) conditions

* Transistor Aging —“'I_I D H
— Gradually causes device to become slower L

* static/dynamic stress

* temperature

AVip,

.

— Finally may results in permanent faults TTime Tme
(a) NBTI (b) HCI 50




Solutions and Challenges

Guardbands to absorb any increase in logic path delay
— Worst-case speed and voltage margins

Challenge: worst-case guardbands pessimistic and too
expensive for current and future chips

or lifetime is significantly reduced...

and probability of permanent faults increases with
lifetime and technology scaling
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Everlasting Architectures?

e Architectures can live longer if they are healed
* Need for
1) performance degradation estimation
— e.g., timing error analysis, on-line test
2) permanent fault detection

3) self-healing mechanisms
— Core-level: e.g., reduces #issues in a VLIW
— System-level: e.g., reduces #cores
— Hardware reconfiguration, approximations, etc.
— Aging-driven scheduling
— JIT compilation/parallelization



Conclusion

RISC-V: a standardized, free and open ISA

— The Linux of hardware

RISC-V is not a research topic but an enabler

Open the box!

(Inria is member of RISC-V International)
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What’s Hot in Computer Architecture?

* Accelerating Deep Learning of course...

— Reduced-precision, sparse computations

BL BL,

* Memory still scales A ]
— Peta-byte of memory [

— But lots of energy to access

ab a+b

* In/Near Memory Computing
— Remove the Von-Neuman bottleneck



Iron law of processor performance

Time _ Instructions 5 ClockCycle Time
Program - Program Instruction ClockCycle

(1) (2) (3) (4)

(2) depends on code, compiler and ISA

(3) depends on ISA and microarchitecture
(4) depends on microarchitecture and technology

(1) as low as possible
— efficient code, compiler, microarchitecture
— given an ISA and a technology
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Energy Efficiency

Energy
Efficiency

e.g., TOPS/Watt

Performance
e.g., Tera op/s (TOPS)

Operations Joules

Power = X ,
Second Operation

* Power budget is fixed

* How to increase energy efficiency while maintaining
performance?
— Specialized hardware that computes at the right (lowest) precision
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