

Vulnerability Analysis of Embedded Digital Systems: from Physics to Microarchitecture

Olivier Sentieys Univ. Rennes, Inria, IRISA olivier.sentieys@inria.fr

collaboration with Joseph Paturel, Angeliki Kritikakou, IRISA, and Guillaume Hubert, ONERA, Toulouse

Why care about Fault Tolerance?

- Modern technologies
 - Lower node capacitances
 - Denser layouts, larger circuits
 - Increased frequencies
- Energy efficiency

High SET¹ sensitivity

¹Single-Event Transient

Vulnerability Analysis of Complex Designs

- Fault injection, simulation or emulation most often:
 - Only inject single-bit faults [1, 2]
 - Do not model the microarchitecture or ignores combinational logic [3, 4]
 - Do not take account of the physical effects
- Memory/register fault injection is not enough
 - Need to model microarchitecture
 - Need to consider combinational logic [5]
- New technologies exhibit multi-bit error behaviors
 - Need to model MBUs¹ as well as SEUs²

¹ Multi-Bit Upsets
² Single-Event Upsets

Single Event Effect: from the particle to the effect on circuits

- SEE analyses based on simulation:
 - Two disconnected approaches

Multi-physic modelling: until cell level

Proposed Vulnerability Analysis Flow

• From Physical to Architectural Level

Main Contributions

- Physical description of particle interactions on nanoscale transistors
 - Operational conditions: mission profile, space weather, temperature, power supply ...
- Fault injection methodology and flow for complex designs
 - From physics to gate to microarchitecture
 - Account for SEUs and MBUs coming from combinational logic
 - But remains fast
- MBUs are present and are here to stay
 - Impact vulnerability
- Use case: in-house RISC-V processor core

STAFEED – 25 juin 2021

Results: Physical-level Analysis with MUSCA SEP3

- Distribution of transient delay profiles
 - Worst-case radiation scenario
 - LET = 58 MeV.cm2.µm-1
 - FDSOI 28nm, 25°C
 - Incidence Angle = 90°
 - 212K injections on 91 logic gates

SET width	Proportion(%)
>500ps	10.543%
>1ns	0.651%
>1.5ns	0.13%

• Delay profiles are used during gatelevel fault injection

SET width distribution, normalized to cell area and input sizes

probability

Gate-level Fault Injection

- Inject SETs in the gate-level netlist
- Aim is to capture profile and probability of error

SET : 5.25% ExToMem : 1.5% : 0.75% result : 0.12% Bit position ...

Logging patterns and error probability (SEUs + MBUs)

Error

probability

Gate-level Fault Injection

[IEEE ISVLSI'20]

Probabilities of Error Patterns

Comet Processor (RISC-V Instruction Set Architecture)

- 32-bit RISC-V instruction set RV32IMF
- In-order 5-stage pipeline microarchitecture
- Designed from a single C++ specification using High-Level Synthesis (HLS)
 - The simulator IS the hardware

https://gitlab.inria.fr/srokicki/Comet

[IEEE/ACM ICCAD'19]

Comet Processor (RISC-V Instruction Set Architecture)

- Logic Synthesis + Place&Route Results
 - FDSOI 28nm
 - rv32i including memory: 0.02mm²
 - 700MHz

Core	ISA	freq.	Area	Lang.	
		(MHz)	(μm^2)		
	rv32i		8 1 6 8		
Comet [14]	rv32im		11 099	C++	
	rv32imf		26760		
	rv32i	700	11114		
Rocket [12]	rv32im	700	12 606	Chisel	
	rv32imf		26 5 50		
PicoRV [15]	rv32i		7 7 4 7	Verilog	
	rv32im		11 176	vernog	

erroneous bits

Number of erroneous bits in output register

Patterns used during Microarchitectural-Level Fault Injection

Logging patterns and error probability (SEUs + MBUs)

Results: Comet Execution Stage

- Influence of SET Width and Frequency on MBUs
 - Fixed width (400ps)

Freq.	200 MHz	300 MHz	400 MHz	500 MHz	600 MHz
SEU	9,308	15,592	23,613	26,489	30,919
SEC	93%	96.3%	94.1%	94.9%	95.5%
MBU	699	599	1,473	1429	1,447
	7%	3.7%	5.9%	5.1%	4.5%

• Fixed frequency (500MHz)

SET	100 ps	200 ps	400 ps	500 ps
SEU	5,144	10,529	26,489	33,449
	97.6%	95.3%	94.9%	95.9%
MBU	127	755	1429	1,432
	2.4%	4.7%	5.1%	4.1%

Gate-level

Analysis

Error

Patterns

.v/.vhdl

Results: Other Comet Stages

• FtoDC

• DCToEX

.v/.vhdl

Gate-level

Analysis

Error

Patterns

STAFEED – 25 juin 2021

STAFEED – 25 juin 2021

Gate-level

Analysis

Microarchitectural-Level Fault Injection: Vulnerability Analysis

- Augmented Comet simulator used for fault injection
- Injection is guided by:
 - i) area of the different pipeline stages
 - ii) gate-level fault patterns

- Architectural Vulnerability Factor (AVF) analyzes the vulnerability of a processor through the probability of fault classes appearing during the execution of a given workload
- Fault classes considered:
 - Crashes and Hangs
 - ISM, AOM, ISM & AOM

ISM: Internal State Mismatch AOM: Application Output Mismatch

STAFEED – 25 juin 2021

Comet Vulnerability Analysis Results

- MA(S): SEUs only, uniform error probability
- MA(S, A): SEUs only, error probabilities based on pipeline area
- GL(S, M, A): Proposed methodology

Error proportions vs analysis methodology

STAFEED – 25 juin 2021

Fine-Grain Vulnerability Analysis

Impact on registers

Fine-Grain Vulnerability Analysis

- Trace-back information of AVF down to gate-level
 - Identification of critical area
 - Guiding exploration of design space when adding fault-tolerance techniques

heatmap of vulnerability

STAFEED – 25 juin 2021

Conclusion

- More refined physics for nanoscale technologies
 - Physical fault injection at transistor and gate levels
- MBUs are present and are here to stay
- MBUs significantly impact AVF
 - More than 50% of critical errors (crashes & hangs)
- Fault injection methodology and flow
 - From Physics to gates to microarchitecture
 - Conscious of MBU patterns and error probability
- More complex processor designs
- Guiding Design Space Exploration
 - of architecture-level fault-tolerant techniques
- Physical fault injection on FPGA cell models

Vulnerability Analysis of Embedded Digital Systems: from Physics to Microarchitecture

Olivier Sentieys Univ. Rennes, Inria, IRISA olivier.sentieys@inria.fr

collaboration with Joseph Paturel, Angeliki Kritikakou, IRISA, and Guillaume Hubert, ONERA, Toulouse

[1] N. J. Wang et al., "Examining ace analysis reliability estimates using fault-injection," SIGARCH Comput. Archit. News, vol. 35, p. 460–469, June 2007.

[2] Y. Xie et al., "An Automated FPGA-Based Fault Injection Platform for Granularly-Pipelined Fault Tolerant CORDIC," in Int. Conf. on Field-Programmable Technology (FPT), pp. 370–373, Dec. 2018.

[3] B. Mutlu et al., "Characterization of the Impact of Soft Errors on Iterative Methods," in IEEE Int. Conf. on High Performance Computing (HiPC), pp. 203–214, Dec. 2018.

[4] C. Mao et al., "An Automated Fault Injection Platform for Fault Tolerant FFT Implemented in SRAM-Based FPGA," in IEEE Int. System-on-Chip Conf. (SOCC), pp. 192–196, Sept. 2018.

[5] N. N. Mahatme et al., "Comparison of Combinational and Sequential Error Rates for a Deep Submicron Process," IEEE Trans. on Nuclear Science, vol. 58, pp. 2719–2725, Dec. 2011.