

Types and terms: evaluation in Isabelle/HOL

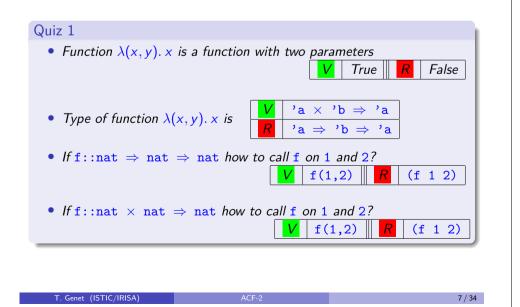
To evaluate a term t in Isabellevalue "t"

Example 2		
	Term	Isabelle's answer
	value "True"	True::bool
	value "2"	Error (cannot infer result type)
	value "(2::nat)"	2::nat
	value "[True,False]"	[True,False]::bool list
	value "(True,True,False)"	(True,True,False)::bool * bool * bool
	value "[2,6,10]"	Error (cannot infer result type)
	value "[(2::nat),6,10]"	[2,6,10]::nat list

T. Genet (ISTIC/IRISA)

Ę

Lambda-calculus - the quiz



Terms and functions: semantics is the $\lambda\text{-calculus}$

Semantics of functional programming languages consists of one rule:

 $(\lambda x. t) a \rightarrow_{\beta} t\{x \mapsto a\}$ (β -reduction)

where $t\{x \mapsto a\}$ is the term t where all occurrences of x are replaced by a

Example 3

- $(\lambda x. x + 1) 10 \rightarrow_{\beta} 10 + 1$
- $(\lambda x \cdot \lambda y \cdot x + y) \mathbf{12} \twoheadrightarrow_{\beta} (\lambda y \cdot \mathbf{1} + y) \mathbf{2} \twoheadrightarrow_{\beta} \mathbf{1} + \mathbf{2}$
- $(\lambda(x,y), y)(1,2) \rightarrow_{\beta} 2$

In Isabelle/HOL, to be β -reduced, terms have to be well-typed

Example 4

Previous examples can be reduced because:

- $(\lambda x. x + 1) :: nat \Rightarrow nat$ and 10 :: nat
- $(\lambda x.\lambda y.x + y) :: nat \Rightarrow nat \Rightarrow nat$ and 1 :: nat and 2 :: nat

ACE-2

• $(\lambda(x, y).y) :: (a \times b) \Rightarrow b \text{ and } (1, 2) :: nat \times nat$

T. Genet (ISTIC/IRISA)

Exercises on function definition and function call

Exercise 1 (In Isabelle/HOL)

Use append::'a list \Rightarrow 'a list \Rightarrow 'a list to concatenate 2 lists of nat, and 3 lists of nat.

• To associate the value of a term t to a name n.....definition "n=t"

Exercise 2 (In Isabelle/HOL)

- **1** Define the function addNc:: $nat \times nat \Rightarrow nat$ adding two naturals
- 2 Use addNc to add 5 to 6
- **3** Define the function add:: $nat \Rightarrow nat \Rightarrow nat$ adding two naturals
- **4** Use add to add 5 to 6

Interlude: a word about semantics and verification

- To verify programs, formal reasoning on their semantics is crucial!
- To prove a property ϕ on a program P we need to precisely and exactly understand P's behavior

For many languages the semantics is given by the compiler (version)!

• C, Flash/ActionScript, JavaScript, Python, Ruby, ...

Some languages have a (written) formal semantics:

- Java ^a, subsets of C (hundreds of pages)
- Proofs are hard because of semantics complexity (e.g. KeY for Java)

^ahttp://docs.oracle.com/javase/specs/jls/se7/html/index.html

Some have a small formal semantics:

• Functional languages: Haskell, subsets of (OCaml, F# and Scala)

ACF-2

• Proofs are easier since semantics essentially consists of a single rule

T. Genet (ISTIC/IRISA)

Constructor terms (II)

All data are built using constructor terms without variables ...even if the representation is generally hidden by Isabelle/HOL

Example 7

- Natural numbers of type nat are terms: 0, (Suc 0), (Suc (Suc 0)), ...
- Integer numbers of type int are couples of natural numbers: ... (0,2), (0,1), (0,0), (1,0), ... represent ... -2, -1, 0, 1 ...
- Lists are built using the operators
 - *Nil*: the empty list
 - Cons: the operator adding an element to the (head) of the list

The term Cons 0 (Cons (Suc 0) Nil) represents the list [0, 1]

 $\underline{\wedge}$ Constructor symbols have types even if they do ${\bf not}$ "compute"

Example 8 (The type of constructor *Cons*)

Cons::'a \Rightarrow 'a list \Rightarrow 'a list

T. Genet (ISTIC/IRISA)

11/34

Constructor terms

Isabelle distinguishes between constructor and function symbols

- A function symbol is associated to a (computable) function:
 - all predefined function, e.g., append
 - all user defined functions, *e.g.*, addNc and add (see Exercise 2)
- A constructor symbol is **not** associated to a function

Definition 5 (Constructor term)

A **term** containing only constructor symbols is a constructor term. A constructor term does not contain function symbols

Example 6

- Term [0, 1, 2] is a constructor term;
- Term (append [0,1,2] [4,5]) is **not** a constructor term (because of append);
- Term 18 is a constructor term;
- Term (add 18 19) is **not** a constructor term (because of add).

ACF-2

T. Genet (ISTIC/IRISA)

Constructor terms - the quiz

Quiz 2

- Nil is a term?
- Nil is a constructor term?
- (Cons (Suc 0) Nil) is a constructor term?
- ((Suc 0), Nil) is a constructor term?
- (add 0 (Suc 0)) is a constructor term?
- (Cons x Nil) is a constructor term?
- (add x y) is a constructor term?
- (Suc 0) is a constructor subterm of (add 0 (Suc 0))?

10/34

False

False

False

False

False

False

False

False

True

True

True

True

True

True

True

True

Constructor terms: Isabelle/HOL

For most of constructor terms there exists shortcuts:

- Usual decimal representation for naturals, integers and rationals 1, 2, -3, -45.67676, ...
- [] and # for lists e.g. Cons 0 (Cons (Suc 0) Nil) = 0#(1#[]) =
- Strings using 2 quotes e.g. ''toto'' (instead of "toto")

Exercise 3

- 1 Prove that 3 is equivalent to its constructor representation
- **2** Prove that [1,1,1] is equivalent to its constructor representation
- **3** Prove that the first element of list [1, 2] is 1
- **4** Infer the constructor representation of rational numbers of type rat
- **5** Infer the constructor representation of strings

T. Genet (ISTIC/IRISA)

Isabelle Theory Library: using functions on lists

Some functions of Lists the

- Some functions of Lists.thy
 - append:: 'a list \Rightarrow 'a list \Rightarrow 'a list
 - rev:: 'a list \Rightarrow 'a list
 - length:: 'a list \Rightarrow nat
 - List.member:: 'a list \Rightarrow 'a \Rightarrow bool
 - map:: ('a \Rightarrow 'b) \Rightarrow 'a list \Rightarrow 'b list

Exercise 4

- 1 Apply the rev function to list [1,2,3]
- 2 Prove that for all value x, reverse of the list [x] is equal to [x]
- **3** Prove that append is associative
- 4 Prove that append is not commutative
- **5** Prove that an element is in a reversed list if it is in the original one
- **6** Using map, from the list [(1,2), (3,3), (4,6)] build the list [3,6,10]
- \bigcirc Using map, from the list [1, 2, 3] build the list [2, 4, 6]
- 8 Prove that map does not change the size of a list

```
T. Genet (ISTIC/IRISA)
```

Isabelle Theory Library

Isabelle comes with a huge library of useful theories

- Numbers: Naturals, Integers, Rationals, Floats, Reals, Complex ...
- Data structures: Lists, Sets, Tuples, Records, Maps
- Mathematical tools: Probabilities, Lattices, Random numbers, ...

All those theories include types, functions and lemmas/theorems

Example 9

[0, 1]

15/34

Let's have a look to a simple one Lists.thy:

- Definition of the datatype (with shortcuts)
- Definitions of functions (e.g. append)
- Definitions and proofs of lemmas (e.g. length_append) lemma "length (xs @ ys) = length xs + length ys"
- Exportation rules for SML, Haskell, Ocaml, Scala (code_printing)

T. Genet (ISTIC/IRISA)

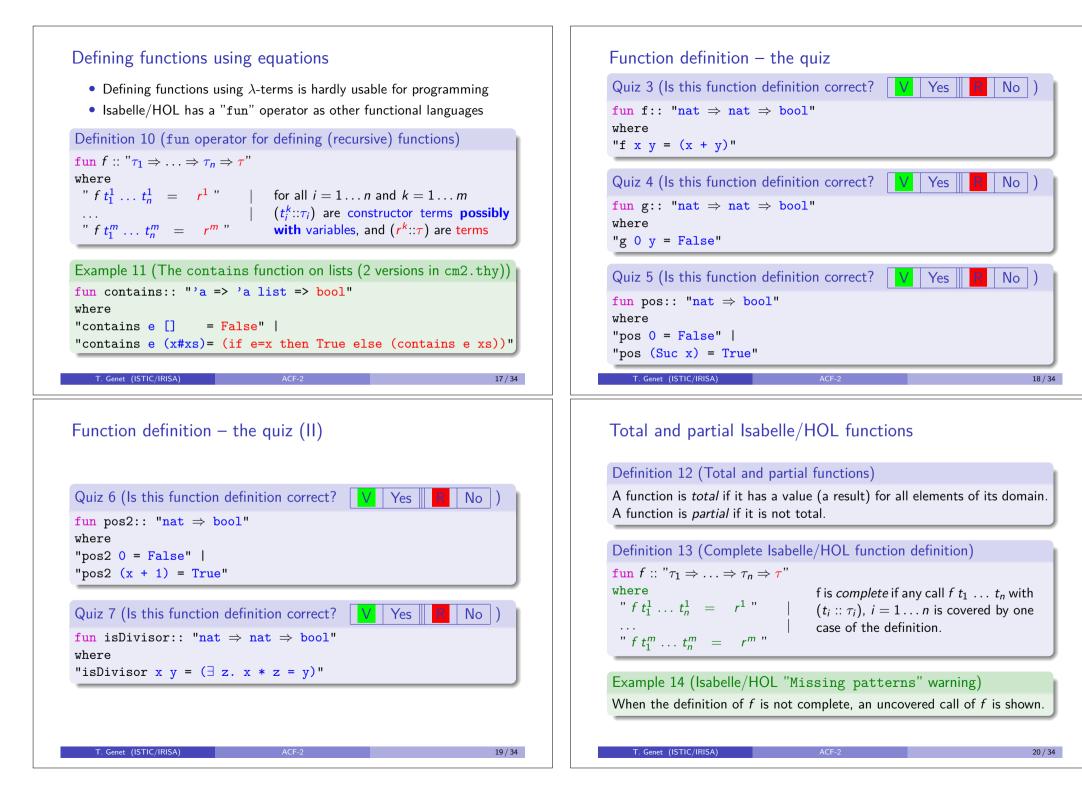
Outline

1 Terms

- Types
- Typed terms
- λ-terms
- Constructor terms

2 Functions defined using equations

- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions



Total and partial Isabelle/HOL functions (II)

Theorem 15

Complete and terminating Isabelle/HOL functions are total, otherwise they are partial.

Question 1

Why termination of f is necessary for f to be total?

Remark 1

All functions in Isabelle/HOL needs to be terminating!

21 / 34

Logic everywhere!

T. Genet (ISTIC/IRISA)

In the end, everything is defined using logic:

- data, data structures: constructor terms
- properties: lemmas (logical formulas)
- programs: functions (also logical formulas!)

Definition 16 (Equations (or simplification rules) defining a function)

A function f consists of a set f.simps of equations on terms.

To visualize a lemma/theorem/simplification rulethm For instance: thm "length_append", thm "append.simps" To find the name of a lemma, etc.find_theorems

For instance: find_theorems "append" "_ + _"

Exercise 5

Use Isabelle/HOL to find the following formulas:

- definition of contains (we just defined) and of nth (part of List.thy)
- find the lemma relating rev (part of List.thy) and length

T. Genet (ISTIC/IRISA)

Outline

Terms

- Types
- Typed terms
- λ -terms

T. Genet (ISTIC/IRISA)

Constructor terms

2 Functions defined using equations

- Logic everywhere!
- Function evaluation using term rewriting
- Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures

Evaluating functions by rewriting terms using equations

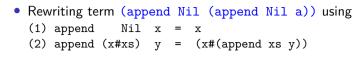
The append function (aliased to @) is defined by the 2 equations:

Replacement of equals by equals = Term rewriting

The first equation (append Nil x) = x means that

- (concatenating the empty list with any list x) is equal to x
- we can thus replace
 - any term of the form (append Nil t) by t (for any value t)
 - wherever and whenever we encounter such a term append Nil t

Term Rewriting in three slides



append Nil append

Niĺ

а

• We note (append Nil (append Nil a)) ->> (append Nil a) if

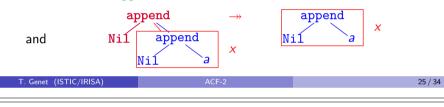
append

• there exists a position in the term where the rule matches

→ Niĺ

- there exists a substitution $\sigma : \mathcal{X} \mapsto \mathcal{T}(\mathcal{F})$ for the rule to match. On the example $\sigma = \{x \mapsto a\}$
- We also have (append Nil a) → a

a x



Term Rewriting in three slides – Formal definitions (II)

Definition 19 (Rewriting using an equation)

A term s can be *rewritten* into the term t (denoted by $s \rightarrow t$) using an Isabelle/HOL equation l=r if there exists a subterm u of s and a substitution σ such that $u = \sigma(1)$. Then, t is the term s where subterm u has been replaced by $\sigma(\mathbf{r})$.

Example 20

Let s = f(g(a), c) and g(x) = h(g(x), b) the Isabelle/HOL equation. we have $f(g(a), c) \rightarrow f(h(g(a), b), c)$ g(x) = h(g(x), b) and $\sigma = \{x \mapsto a\}$ because On the opposite t = f(a, c) cannot be rewritten by g(x) = h(g(x), b).

Remark 2

Isabelle/HOL rewrites terms using equations in the order of the function definition and only from left to right.

T. Genet (ISTIC/IRISA)

27 / 34

Term Rewriting in three slides – Formal definitions

Definition 17 (Substitution)

A substitution σ is a function replacing variables of \mathcal{X} by terms of $\mathcal{T}(\mathcal{F},\mathcal{X})$ in a term of $\mathcal{T}(\mathcal{F},\mathcal{X})$.

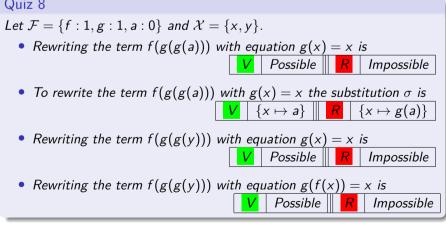
Example 18

Let $\mathcal{F} = \{f : 3, h : 1, g : 1, a : 0\}$ and $\mathcal{X} = \{x, y, z\}$. Let σ be the substitution $\sigma = \{ \mathbf{x} \mapsto \mathbf{g}(\mathbf{a}), \mathbf{y} \mapsto h(\mathbf{z}) \}.$ Let $t = f(h(\mathbf{x}), \mathbf{x}, g(\mathbf{y}))$. We have $\sigma(t) = f(h(g(a)), g(a), g(h(z))).$

T. Genet (ISTIC/IRISA)

Term rewriting – the quiz

Quiz 8





Isabelle evaluation = rewriting terms using equations (II)

```
(1) contains e []
                           = False
(2) contains e (x # xs)= (if e=x then True else (contains e xs))
Evaluation of test: contains 2 [1,2,3]
 \rightarrow if 2=1 then True else (contains 2 [2.3])
            by equation (2), because [1,2,3] = 1\#[2,3]
 \rightarrow if False then True else (contains 2 [2,3])
            by Isabelle equations defining equality on naturals
 \rightarrow contains 2 [2.3]
            by Isabelle equation (if False then x else y = y)
 \rightarrow if 2=2 then True else (contains 2 [3])
            by equation (2), because [2,3] = 2\#[3]
  \rightarrow if True then True else (contains 2 [3])
            by Isabelle equations defining equality on naturals
 → True
            by Isabelle equation (if True then x else y = x)
  T. Genet (ISTIC/IRISA)
```

Lemma simplification = Rewriting + Logical deduction (II)

```
(1) contains e [] = False
(2) contains e (x # xs) = (if e=x then True else (contains e xs))
```

```
(3) append [] x = x
(4) append (x # xs) y = x # (append xs y)
```

Exercise 6

Is it possible to prove the lemma contains u (append [u] v) by simplification/rewriting?

Exercise 7

Is it possible to prove the lemma contains v (append u [v]) by simplification/rewriting?

Demo of rewriting in Isabelle/HOL!

Evaluation of partial functions

 $\ensuremath{\mathsf{Evaluation}}$ of partial functions using rewriting by equational definitions may not result in a constructor term

Exercise 8

Let index be the function defined by:

```
fun index:: "'a => 'a list => nat"
```

where

```
"index y (x#xs) = (if x=y then 0 else 1+(index y xs))"
```

- Define the function in Isabelle/HOL
- What does it computes?
- Why is index a partial function? (What does Isabelle/HOL says?)

ACF-2

- For index, give an example of a call whose result is:
 - a constructor term
 - a match failure
- Define the property relating functions index and List.nth

```
T. Genet (ISTIC/IRISA)
```

33 / 34

Scala export + Demo

To export functions to Haskell, SML, Ocaml, Scala export_code For instance, to export the contains and index functions to Scala:

export_code contains index in Scala

_test.scala