
Analyse et Conception Formelles

Lesson 2

–
Types, terms and functions

cb

T. Genet (ISTIC/IRISA) ACF-2 1 / 34

Outline

1 Terms
• Types
• Typed terms
• ⁄-terms
• Constructor terms

2 Functions defined using equations
• Logic everywhere!
• Function evaluation using term rewriting
• Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow’s lectures

T. Genet (ISTIC/IRISA) ACF-2 2 / 34

Types: syntax

· ::= (·)
| bool | nat | char | . . . base types
| Õa | Õb | . . . type variables
| · ∆ · functions
| · ◊ . . . ◊ · tuples (ascii for ◊: *)
| · list lists
| . . . user-defined types

The operator ∆ is right-associative, for instance:

nat ∆ nat ∆ bool is equivalent to nat ∆ (nat ∆ bool)

T. Genet (ISTIC/IRISA) ACF-2 3 / 34

Typed terms: syntax
term ::= (term)

| a a œ F or a œ X
| term term function application
| ⁄y . term function definition with y œ X
| (term, . . . , term) tuples
| [term, . . . , term] lists
| (term :: ·) type annotation
| . . . a lot of syntactic sugar

Function application is left-associative, for instance:
f a b c is equivalent to ((f a) b) c

Example 1 (Types of terms)
Term Type Term Type

y ’a t1 ’a
(t1,t2,t3) (’a ◊ ’b ◊ ’c) [t1,t2,t3] ’a list

⁄ y. y ’a ∆ ’a ⁄ y z. z ’a ∆ ’b ∆ ’b
T. Genet (ISTIC/IRISA) ACF-2 4 / 34

Types and terms: evaluation in Isabelle/HOL

To evaluate a term t in Isabelle . value ”t”

Example 2
Term Isabelle’s answer
value ”True” True::bool
value ”2” Error (cannot infer result type)
value ”(2::nat)” 2::nat
value ”[True,False]” [True,False]::bool list
value ”(True,True,False)” (True,True,False)::bool * bool * bool
value ”[2,6,10]” Error (cannot infer result type)
value ”[(2::nat),6,10]” [2,6,10]::nat list

T. Genet (ISTIC/IRISA) ACF-2 5 / 34

Terms and functions: semantics is the ⁄-calculus
Semantics of functional programming languages consists of one rule:

(⁄ x . t) a ⇣— t{x ‘æ a} (—-reduction)
where t{x ‘æ a} is the term t where all occurrences of x are replaced by a

Example 3
• (⁄ x . x + 1) 10 ⇣— 10 + 1
• (⁄ x .⁄ y . x + y) 1 2 ⇣— (⁄ y . 1 + y) 2 ⇣— 1 + 2
• (⁄ (x , y). y) (1, 2) ⇣— 2

In Isabelle/HOL, to be —-reduced, terms have to be well-typed

Example 4
Previous examples can be reduced because:

• (⁄ x . x + 1) :: nat ∆ nat and 10 :: nat
• (⁄ x .⁄ y . x + y) :: nat ∆ nat ∆ nat and 1 :: nat and 2 :: nat
• (⁄ (x , y).y) :: (’a ◊ ’b) ∆ ’b and (1, 2) :: nat ◊ nat

T. Genet (ISTIC/IRISA) ACF-2 6 / 34

Lambda-calculus – the quiz

Quiz 1
• Function ⁄(x , y). x is a function with two parameters

V True R False

• Type of function ⁄(x , y). x is V ’a ◊ ’b ∆ ’a
R ’a ∆ ’b ∆ ’a

• If f::nat ∆ nat ∆ nat how to call f on 1 and 2?
V f(1,2) R (f 1 2)

• If f::nat ◊ nat ∆ nat how to call f on 1 and 2?
V f(1,2) R (f 1 2)

T. Genet (ISTIC/IRISA) ACF-2 7 / 34

Exercises on function definition and function call

Exercise 1 (In Isabelle/HOL)
Use append::’a list ∆ ’a list ∆ ’a list to concatenate 2 lists
of nat, and 3 lists of nat.

• To associate the value of a term t to a name n definition ”n=t”

Exercise 2 (In Isabelle/HOL)

1 Define the function addNc:: nat ◊ nat ∆ nat adding two naturals
2 Use addNc to add 5 to 6
3 Define the function add:: nat ∆ nat ∆ nat adding two naturals
4 Use add to add 5 to 6

T. Genet (ISTIC/IRISA) ACF-2 8 / 34

Interlude: a word about semantics and verification
• To verify programs, formal reasoning on their semantics is crucial!
• To prove a property „ on a program P we need to precisely and

exactly understand P’s behavior

For many languages the semantics is given by the compiler (version)!
• C, Flash/ActionScript, JavaScript, Python, Ruby, . . .

Some languages have a (written) formal semantics:
• Java a, subsets of C (hundreds of pages)
• Proofs are hard because of semantics complexity (e.g. KeY for Java)
ahttp://docs.oracle.com/javase/specs/jls/se7/html/index.html

Some have a small formal semantics:
• Functional languages: Haskell, subsets of (OCaml, F# and Scala)
• Proofs are easier since semantics essentially consists of a single rule

T. Genet (ISTIC/IRISA) ACF-2 9 / 34

Constructor terms
Isabelle distinguishes between constructor and function symbols

• A function symbol is associated to a (computable) function:
• all predefined function, e.g., append
• all user defined functions, e.g., addNc and add (see Exercise 2)

• A constructor symbol is not associated to a function

Definition 5 (Constructor term)
A term containing only constructor symbols is a constructor term.
A constructor term does not contain function symbols

Example 6
• Term [0, 1, 2] is a constructor term;
• Term (append [0,1,2] [4,5]) is not a constructor term (because of append);
• Term 18 is a constructor term;
• Term (add 18 19) is not a constructor term (because of add).

T. Genet (ISTIC/IRISA) ACF-2 10 / 34

Constructor terms (II)
All data are built using constructor terms without variables

...even if the representation is generally hidden by Isabelle/HOL

Example 7
• Natural numbers of type nat are terms: 0, (Suc 0), (Suc (Suc 0)), . . .
• Integer numbers of type int are couples of natural numbers:

. . . (0, 2), (0, 1), (0, 0), (1, 0), . . . represent . . . ≠2, ≠1, 0, 1 . . .
• Lists are built using the operators

• Nil : the empty list
• Cons: the operator adding an element to the (head) of the list

The term Cons 0 (Cons (Suc 0) Nil) represents the list [0, 1]

" Constructor symbols have types even if they do not “compute”

Example 8 (The type of constructor Cons)
Cons::’a ∆ ’a list ∆ ’a list

T. Genet (ISTIC/IRISA) ACF-2 11 / 34

Constructor terms – the quiz

Quiz 2
• Nil is a term? V True R False
• Nil is a constructor term? V True R False
• (Cons (Suc 0) Nil) is a constructor term?

V True R False
• ((Suc 0), Nil) is a constructor term? V True R False
• (add 0 (Suc 0)) is a constructor term? V True R False
• (Cons x Nil) is a constructor term? V True R False
• (add x y) is a constructor term? V True R False
• (Suc 0) is a constructor subterm of (add 0 (Suc 0))?

V True R False

T. Genet (ISTIC/IRISA) ACF-2 12 / 34

Constructor terms: Isabelle/HOL

For most of constructor terms there exists shortcuts:
• Usual decimal representation for naturals, integers and rationals

1, 2, -3, -45.67676, . . .
• [] and # for lists

e.g. Cons 0 (Cons (Suc 0) Nil) = 0#(1#[]) = [0, 1]
• Strings using 2 quotes e.g. ’’toto’’ (instead of "toto")

Exercise 3
1 Prove that 3 is equivalent to its constructor representation
2 Prove that [1, 1, 1] is equivalent to its constructor representation
3 Prove that the first element of list [1, 2] is 1
4 Infer the constructor representation of rational numbers of type rat
5 Infer the constructor representation of strings

T. Genet (ISTIC/IRISA) ACF-2 13 / 34

Isabelle Theory Library

Isabelle comes with a huge library of useful theories
• Numbers: Naturals, Integers, Rationals, Floats, Reals, Complex . . .
• Data structures: Lists, Sets, Tuples, Records, Maps . . .
• Mathematical tools: Probabilities, Lattices, Random numbers, . . .

All those theories include types, functions and lemmas/theorems

Example 9
Let’s have a look to a simple one Lists.thy:

• Definition of the datatype (with shortcuts)
• Definitions of functions (e.g. append)
• Definitions and proofs of lemmas (e.g. length append)

lemma ”length (xs @ ys) = length xs + length ys”
• Exportation rules for SML, Haskell, Ocaml, Scala (code printing)

T. Genet (ISTIC/IRISA) ACF-2 14 / 34

Isabelle Theory Library: using functions on lists
Some functions of Lists.thy

• append:: ’a list ∆ ’a list ∆ ’a list
• rev:: ’a list ∆ ’a list
• length:: ’a list ∆ nat
• List.member:: ’a list ∆ ’a ∆ bool
• map:: (’a ∆ ’b) ∆ ’a list ∆ ’b list

Exercise 4
1 Apply the rev function to list [1, 2, 3]
2 Prove that for all value x, reverse of the list [x] is equal to [x]
3 Prove that append is associative
4 Prove that append is not commutative
5 Prove that an element is in a reversed list if it is in the original one
6 Using map, from the list [(1, 2), (3, 3), (4, 6)] build the list [3, 6, 10]
7 Using map, from the list [1, 2, 3] build the list [2, 4, 6]
8 Prove that map does not change the size of a list

T. Genet (ISTIC/IRISA) ACF-2 15 / 34

Outline

1 Terms
• Types
• Typed terms
• ⁄-terms
• Constructor terms

2 Functions defined using equations
• Logic everywhere!
• Function evaluation using term rewriting
• Partial functions

T. Genet (ISTIC/IRISA) ACF-2 16 / 34

Defining functions using equations
• Defining functions using ⁄-terms is hardly usable for programming
• Isabelle/HOL has a ”fun” operator as other functional languages

Definition 10 (fun operator for defining (recursive) functions)
fun f :: ”·1 ∆ . . . ∆ ·n ∆ ·”
where
” f t1

1 . . . t1
n = r1 ” |

. . . |
” f tm

1 . . . tm
n = rm ”

for all i = 1 . . . n and k = 1 . . . m
(tk

i ::·i) are constructor terms possibly
with variables, and (rk ::·) are terms

Example 11 (The contains function on lists (2 versions in cm2.thy))
fun contains:: "’a => ’a list => bool"
where
"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

T. Genet (ISTIC/IRISA) ACF-2 17 / 34

Function definition – the quiz
Quiz 3 (Is this function definition correct? V Yes R No)
fun f:: "nat ∆ nat ∆ bool"
where
"f x y = (x + y)"

Quiz 4 (Is this function definition correct? V Yes R No)
fun g:: "nat ∆ nat ∆ bool"
where
"g 0 y = False"

Quiz 5 (Is this function definition correct? V Yes R No)
fun pos:: "nat ∆ bool"
where
"pos 0 = False" |
"pos (Suc x) = True"

T. Genet (ISTIC/IRISA) ACF-2 18 / 34

Function definition – the quiz (II)

Quiz 6 (Is this function definition correct? V Yes R No)
fun pos2:: "nat ∆ bool"
where
"pos2 0 = False" |
"pos2 (x + 1) = True"

Quiz 7 (Is this function definition correct? V Yes R No)
fun isDivisor:: "nat ∆ nat ∆ bool"
where
"isDivisor x y = (÷ z. x * z = y)"

T. Genet (ISTIC/IRISA) ACF-2 19 / 34

Total and partial Isabelle/HOL functions

Definition 12 (Total and partial functions)
A function is total if it has a value (a result) for all elements of its domain.
A function is partial if it is not total.

Definition 13 (Complete Isabelle/HOL function definition)
fun f :: ”·1 ∆ . . . ∆ ·n ∆ ·”
where
” f t1

1 . . . t1
n = r1 ” |

. . . |
” f tm

1 . . . tm
n = rm ”

f is complete if any call f t1 . . . tn with
(ti :: ·i), i = 1 . . . n is covered by one
case of the definition.

Example 14 (Isabelle/HOL ”Missing patterns” warning)
When the definition of f is not complete, an uncovered call of f is shown.

T. Genet (ISTIC/IRISA) ACF-2 20 / 34

Total and partial Isabelle/HOL functions (II)

Theorem 15
Complete and terminating Isabelle/HOL functions are total, otherwise they
are partial.

Question 1
Why termination of f is necessary for f to be total?

Remark 1
All functions in Isabelle/HOL needs to be terminating!

T. Genet (ISTIC/IRISA) ACF-2 21 / 34

Outline

1 Terms
• Types
• Typed terms
• ⁄-terms
• Constructor terms

2 Functions defined using equations
• Logic everywhere!
• Function evaluation using term rewriting
• Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow’s lectures

T. Genet (ISTIC/IRISA) ACF-2 22 / 34

Logic everywhere!
In the end, everything is defined using logic:

• data, data structures: constructor terms
• properties: lemmas (logical formulas)
• programs: functions (also logical formulas!)

Definition 16 (Equations (or simplification rules) defining a function)
A function f consists of a set f.simps of equations on terms.

To visualize a lemma/theorem/simplification rule .thm
For instance: thm "length append", thm "append.simps"

To find the name of a lemma, etc. .find theorems
For instance: find theorems "append" " + "

Exercise 5
Use Isabelle/HOL to find the following formulas:

• definition of contains (we just defined) and of nth (part of List.thy)
• find the lemma relating rev (part of List.thy) and length

T. Genet (ISTIC/IRISA) ACF-2 23 / 34

Evaluating functions by rewriting terms using equations

The append function (aliased to @) is defined by the 2 equations:

(1) append Nil x = x (* recall that Nil=[] *)
(2) append (x#xs) y = (x#(append xs y))

Replacement of equals by equals = Term rewriting
The first equation (append Nil x) = x means that

• (concatenating the empty list with any list x) is equal to x
• we can thus replace

• any term of the form (append Nil t) by t (for any value t)
• wherever and whenever we encounter such a term append Nil t

T. Genet (ISTIC/IRISA) ACF-2 24 / 34

Term Rewriting in three slides
• Rewriting term (append Nil (append Nil a)) using

(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

append

Nil append

Nil a
append

Nil x
⇣ a x

append

Nil

⇣ a

• We note (append Nil (append Nil a)) ⇣ (append Nil a) if
• there exists a position in the term where the rule matches
• there exists a substitution ‡ : X ‘æ T (F) for the rule to match.

On the example ‡ = {x ‘æ a}
• We also have (append Nil a) ⇣ a

and
append

Nil append

Nil a

append

Nil x

⇣ append
x

Nil a

T. Genet (ISTIC/IRISA) ACF-2 25 / 34

Term Rewriting in three slides – Formal definitions

Definition 17 (Substitution)
A substitution ‡ is a function replacing variables of X by terms of
T (F , X) in a term of T (F , X).

Example 18
Let F = {f : 3, h : 1, g : 1, a : 0} and X = {x , y , z}.

Let ‡ be the substitution ‡ = {x ‘æ g(a), y ‘æ h(z)}.

Let t = f (h(x), x , g(y)).

We have ‡(t) = f (h(g(a)), g(a), g(h(z))).

T. Genet (ISTIC/IRISA) ACF-2 26 / 34

Term Rewriting in three slides – Formal definitions (II)
Definition 19 (Rewriting using an equation)
A term s can be rewritten into the term t (denoted by s ⇣ t) using an
Isabelle/HOL equation l=r if there exists a subterm u of s and a
substitution ‡ such that u = ‡(l). Then, t is the term s where subterm u
has been replaced by ‡(r).

Example 20
Let s = f (g(a), c) and g(x) = h(g(x),b) the Isabelle/HOL equation.
we have f (g(a) , c) ⇣ f (h(g(a), b) , c)
because g(x) = h(g(x),b) and ‡ = {x ‘æ a}

On the opposite t = f (a, c) cannot be rewritten by g(x) = h(g(x),b).

Remark 2

Isabelle/HOL rewrites terms using equations in the order of the function
definition and only from left to right.

T. Genet (ISTIC/IRISA) ACF-2 27 / 34

Term rewriting – the quiz

Quiz 8
Let F = {f : 1, g : 1, a : 0} and X = {x , y}.

• Rewriting the term f (g(g(a))) with equation g(x) = x is
V Possible R Impossible

• To rewrite the term f (g(g(a))) with g(x) = x the substitution ‡ is
V {x ‘æ a} R {x ‘æ g(a)}

• Rewriting the term f (g(g(y))) with equation g(x) = x is
V Possible R Impossible

• Rewriting the term f (g(g(y))) with equation g(f (x)) = x is
V Possible R Impossible

T. Genet (ISTIC/IRISA) ACF-2 28 / 34

Isabelle evaluation = rewriting terms using equations
(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

Rewriting the term: append [1,2] [3,4] with (1) then (2) (Rmk 2)
First, recall that [1,2] = (1#(2#Nil)) and [3,4] = (3#(4#Nil))!
append (1#(2#Nil)) (3#(4#Nil)) ”⇣(1) ⇣(2)
(1# (append (2#Nil) (3#(4#Nil))))}
with ‡ = {x ‘æ 1, xs ‘æ (2#Nil), y ‘æ (3#(4#Nil))}
(1# (append (2#Nil) (3#(4#Nil)))) ⇣(2)
(1# (2#(append Nil (3#(4#Nil)))))
with ‡ = {x ‘æ 2, xs ‘æ Nil , y ‘æ (3#(4#Nil))}
(1#(2# (append Nil (3#(4#Nil))))) ⇣(1)
(1#(2# (3#(4#Nil)))) = [1,2,3,4] !
with ‡ = {x ‘æ (3#(4#Nil))}

Example 21
See demo of step by step rewriting in Isabelle/HOL!

T. Genet (ISTIC/IRISA) ACF-2 29 / 34

Isabelle evaluation = rewriting terms using equations (II)

(1) contains e [] = False
(2) contains e (x # xs)= (if e=x then True else (contains e xs))

Evaluation of test: contains 2 [1,2,3]
⇣ if 2=1 then True else (contains 2 [2,3])

by equation (2), because [1,2,3] = 1#[2,3]
⇣ if False then True else (contains 2 [2,3])

by Isabelle equations defining equality on naturals
⇣ contains 2 [2,3]

by Isabelle equation (if False then x else y = y)
⇣ if 2=2 then True else (contains 2 [3])

by equation (2), because [2,3] = 2#[3]
⇣ if True then True else (contains 2 [3])

by Isabelle equations defining equality on naturals
⇣ True

by Isabelle equation (if True then x else y = x)

T. Genet (ISTIC/IRISA) ACF-2 30 / 34

Lemma simplification= Rewriting + Logical deduction

(1) contains e [] = False
(2) contains e (x # xs)= (if e=x then True else (contains e xs))

Proving the lemma: contains y [z,y,v]
⇣ if y=z then True else (contains y [y,v])

by equation (2), because [z,y,v] = z#[y,v]
⇣ if y=z then True else (if y=y then True else (contains y [v]))

by equation (2), because [y,v] = y#[v]
⇣ if y=z then True else (if True then True else (contains y [v]))

because y=y is trivially True
⇣ if y=z then True else True

by Isabelle equation (if True then x else y = x)
⇣ True

by logical deduction (if b then True else True)ΩæTrue

T. Genet (ISTIC/IRISA) ACF-2 31 / 34

Lemma simplification= Rewriting + Logical deduction (II)

(1) contains e [] = False
(2) contains e (x # xs) = (if e=x then True else (contains e xs))

(3) append [] x = x
(4) append (x # xs) y = x # (append xs y)

Exercise 6
Is it possible to prove the lemma contains u (append [u] v) by
simplification/rewriting?

Exercise 7
Is it possible to prove the lemma contains v (append u [v]) by
simplification/rewriting?

Demo of rewriting in Isabelle/HOL!

T. Genet (ISTIC/IRISA) ACF-2 32 / 34

Evaluation of partial functions
Evaluation of partial functions using rewriting by equational definitions
may not result in a constructor term

Exercise 8
Let index be the function defined by:

fun index:: "’a => ’a list => nat"
where
"index y (x#xs) = (if x=y then 0 else 1+(index y xs))"

• Define the function in Isabelle/HOL
• What does it computes?
• Why is index a partial function? (What does Isabelle/HOL says?)
• For index, give an example of a call whose result is:

• a constructor term
• a match failure

• Define the property relating functions index and List.nth

T. Genet (ISTIC/IRISA) ACF-2 33 / 34

Scala export + Demo
To export functions to Haskell, SML, Ocaml, Scala export code
For instance, to export the contains and index functions to Scala:
export_code contains index in Scala

test.scala

object cm2 {
def contains[A : HOL.equal](e: A, x1: List[A]): Boolean =
(e, x1) match {

case (e, Nil) => false
case (e, x :: xs) => (if (HOL.eq[A](e, x)) true

else contains[A](e, xs))
}
def index[A : HOL.equal](y: A, x1: List[A]): Nat =
(y, x1) match {

case (y, x :: xs) =>
(if (HOL.eq[A](x, y)) Nat(0)
else Nat(1) + index[A](y, xs))

}
}

T. Genet (ISTIC/IRISA) ACF-2 34 / 34

