
Analyse et Conception Formelles

Lesson 3

–
Recursive Functions and Algebraic Data Types

cb

T. Genet (ISTIC/IRISA) ACF-3 1 / 19

Recursion everywhere... and nothing else

«Recursion in computer science is a method where the solution to a
problem depends on solutions to smaller instances of the same problem»

• The «bad» news: in Isabelle/HOL, there is no while, no for, no
mutable arrays and no pointers, . . .

• The good news: you don’t really need them to program!
• The second good news: programs are easier to prove without all that!

In Isabelle/HOL all complex types and functions are defined using recursion
• What theory says: expressive power of recursive-only languages and

imperative languages is equivalent
• What functional programmers say: it is as it should always be
• What other programmers say: it is tricky but you always get by

T. Genet (ISTIC/IRISA) ACF-3 2 / 19

Outline

1 Recursive functions
• Definition
• Termination proofs with measures
• Di�erence between fun, function and primrec

2 (Recursive) Algebraic Data Types
• Defining Algebraic Data Types using datatype
• Building objects of Algebraic Data Types
• Matching objects of Algebraic Data Types
• Type abbreviations

Acknowledgements:
some material is borrowed from T. Nipkow and S. Blazy’s lectures

T. Genet (ISTIC/IRISA) ACF-3 3 / 19

Recursive Functions
• A function is recursive if it is defined using itself.
• Recursion can be direct

fun contains:: "’a => ’a list => bool"
where
"contains e [] = False" |
"contains e (x#xs) = (e=x \/ (contains e xs))"

• ... or indirect. In this case, functions are said to be mutually recursive.
fun even:: "nat => bool"
and odd:: "nat => bool"
where

"even 0 = True" |
"even (Suc x) = odd x" |
"odd 0 = False" |
"odd (Suc x) = even x"

T. Genet (ISTIC/IRISA) ACF-3 4 / 19

Terminating Recursive Functions
In Isabelle/HOL, all the recursive functions have to be terminating!

How to guarantee the termination of a recursive function? (practice)
• Needs at least one base case (non recursive case)
• Every recursive case must go towards a base case
• ... or every recursive case «decreases» the size of one parameter

How to guarantee the termination of a recursive function? (theory)
• If f ::·1 ∆ . . . ∆ ·n ∆ · then define a measure function

g::·1 ◊ . . . ◊ ·n ∆ N
• Prove that the measure of all recursive calls is decreasing

To prove termination of f f (t1) ⇣ f (t2) ⇣ . . .
Prove that g(t1) > g(t2) > . . .

• The ordering > is well founded on N
i.e. no infinite decreasing sequence of naturals n1 > n2 > . . .

T. Genet (ISTIC/IRISA) ACF-3 5 / 19

Terminating Recursive Functions (II)

How to guarantee the termination of a recursive function? (theory)
• If f ::·1 ∆ . . . ∆ ·n ∆ · then define a measure function

g::·1 ◊ . . . ◊ ·n ∆ N
• Prove that the measure of all recursive calls is decreasing

To prove termination of f f (t1) ⇣ f (t2) ⇣ . . .
Prove that g(t1) > g(t2) > . . .

Example 1 (Proving termination using a measure)

"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

1 We define the measure g = ⁄(x , y). (length y)

2 We prove that ’e x xs. g(e, (x#xs)) > g(e, xs)

T. Genet (ISTIC/IRISA) ACF-3 6 / 19

Proving termination with measure – the quiz
Quiz 1

• Proving termination of a function f ensures that the evaluations of

(f t) will terminate for V some t R all possible t

• For a function f::’a list ∆ ’a list a measure function should

be of type V ’a list ∆ ’a list R ’a list ∆ nat
• For the function f::nat list ∆ nat list

"f [] = []" |
"f (x#xs) = (if x=1 then [x] else xs)"

V We do not need a measure function

R The only possible measure is ⁄x . (length x)
• For function f::nat list ∆ nat list

"f [] = []" |
"f (x#xs)= (if x=1 then (f(x#xs)) else (f xs))"

V There is no measure function

R The only possible measure is ⁄x . (length x)

T. Genet (ISTIC/IRISA) ACF-3 7 / 19

Terminating Recursive Functions (III)

How to guarantee the termination of a recursive function? (Isabelle/HOL)
• Define the recursive function using fun
• Isabelle/HOL automatically tries to build a measure1

• If no measure is found the function is rejected
• If it is not terminating, make it terminating!
• Try to modify it so that its termination is easier to show

Otherwise
• Re-define the recursive function using function (sequential)
• Manually give a measure to achieve the termination proof

1Actually, it tries to build a termination ordering but it has the same objective.
T. Genet (ISTIC/IRISA) ACF-3 8 / 19

Terminating Recursive Functions (IV)
Example 2
A definition of the contains function using function is the following:

function (sequential) contains::"’a ∆ ’a list ∆ bool"
where
"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

apply pat_completeness Prove that the function is ”complete”
apply auto i.e. patterns cover the domain
done

Prove its termination using the measure
termination contains proposed in Example 1
apply (relation "measure (⁄(x,y). (length y))")
apply auto
done

T. Genet (ISTIC/IRISA) ACF-3 9 / 19

Terminating Recursive Functions (V)

Exercise 1
Define the following functions, see if they are terminating. If not, try to

modify them so that they become terminating.

fun f::"nat => nat"
where
"f x=f (x - 1)"

fun f2::"int => int"
where
"f2 x = (if x=0 then 0 else f2 (x - 1))"

fun f3::"nat => nat => nat"
where
"f3 x y= (if x >= 10 then 0 else f3 (x + 1) (y + 1))"

T. Genet (ISTIC/IRISA) ACF-3 10 / 19

Terminating Recursive Functions (VI)
Automatic termination proofs (fun definition) are generally enough

• Covers 90% of the functions commonly defined by programmers
• Otherwise, it is generally possible to adapt a function to fit this setting

Most of the functions are terminating by construction (primitive recursive)

Definition 3 (Primitive recursive functions: primrec)
Functions whose recursive calls «peels o�» exactly one constructor

Example 4 (contains can be defined using primrec instead of fun)
primrec contains:: "’a => ’a list => bool"
where
"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

For instance, in List.thy:
• 26 ”fun”, 34 ”primrec” with automatic termination proofs
• 3 ”function” needing measures and manual termination proofs.

T. Genet (ISTIC/IRISA) ACF-3 11 / 19

Recursive functions, exercises

Exercise 2
Define the following recursive functions

• A function sumList computing the sum of the elements of a list of

naturals

• A function sumNat computing the sum of the n first naturals

• A function makeList building the list of the n first naturals

State and verify a lemma relating sumList, sumNat and makeList

T. Genet (ISTIC/IRISA) ACF-3 12 / 19

Outline

1 Recursive functions
• Definition
• Termination proofs with orderings
• Termination proofs with measures
• Di�erence between fun, function and primrec

2 (Recursive) Algebraic Data Types
• Defining Algebraic Data Types using datatype
• Building objects of Algebraic Data Types
• Matching objects of Algebraic Data Types
• Type abbreviations

T. Genet (ISTIC/IRISA) ACF-3 13 / 19

(Recursive) Algebraic Data Types
Basic types and type constructors (list, ∆, *) are not enough to:

• Define enumerated types
• Define unions of distinct types
• Build complex structured types

Like all functional languages, Isabelle/HOL solves those three problems
using one type construction: Algebraic Data Types (sum-types in OCaml)

Definition 5 (Isabelle/HOL Algebraic Data Type)
To define type · parameterized by types (–1, . . . , –n):
datatype (–1, . . . , –n)· = C1 ·1,1 . . . ·1,n1 with C1, . . . , Cn

| . . . capitalized identifiers
| Ck ·1,k . . . ·1,nk

Example 6 (The type of (polymorphic) lists, defined using datatype)
datatype ’a list = Nil (* Nil and Cons are capitalized *)

| Cons ’a "’a list"
T. Genet (ISTIC/IRISA) ACF-3 14 / 19

Building objects of Algebraic Data Types
Any definition of the form

datatype (–1, . . . , –n)· = C1 ·1,1 . . . ·1,n1
| . . .
| Ck ·1,k . . . ·1,nk

also defines constructors C1, . . . , Ck for objects of type (–1, . . . , –n)·
The type of constructor Ci is ·i ,1 ∆ . . . ∆ ·i ,ni ∆ (–1, . . . , –n)·

Example 7

datatype ’a list = Nil
| Cons ’a "’a list" defines constructors

Nil::’a list and Cons::’a ∆ ’a list ∆ ’a list
Hence,

• Cons (3::nat) (Cons 4 Nil) is an object of type nat list
• Cons (3::nat) is an object of type nat list ∆ nat list

T. Genet (ISTIC/IRISA) ACF-3 15 / 19

Matching objects of Algebraic Data Types

Objects of Algebraic Data Types can be matched using case expressions:
(case l of Nil => ... | (Cons x r) => ...)

possibly with wildcards, i.e. ”_”
(case i of 0 => ... | (Suc _) => ...)

and nested patterns
(case l of (Cons 0 Nil) => ... | (Cons (Suc x) Nil) => ...)

possibly embedded in a function definition

fun first::"’a list =>’a list" fun first::"’a list =>’a list"
where where

"first Nil = Nil" | "first [] = []" |
"first (Cons x _) = (Cons x Nil)" "first (x#_) = [x]"

T. Genet (ISTIC/IRISA) ACF-3 16 / 19

Building objects of Algebraic Data Types – the quiz
Quiz 2 (we define datatype abstInt= Any | Mint int)

• How to build an object of type abstInt from integer 13?

V 13 R (Mint 13)

• How to build the object Any of type abstInt?

V Any R (Mint Any)

• To check if a variable x::abstInt contains an integer how to do?

V (case x of (Mint) => True | Any => False)
R x= (Mint)

• Let f be defined by f::abstInt ∆ abstInt ∆ abstInt
"f (Mint x) (Mint y) = (Mint x+y)" |
"f = Any"

What is the value of:

(f (Mint 1) (Mint 2)) (f Any (Mint 2))
V Any
R Mint 3

V Any
R Undefined

T. Genet (ISTIC/IRISA) ACF-3 17 / 19

Algebraic Data Types, exercises

Exercise 3
Define the following types and build an object of each type using value

• The enumerated type color with possible values: black, white and

grey

• The type token union of types string and int
• The type of (polymorphic) binary trees whose elements are of type ’a

Define the following functions

• A function notBlack that answers true if a color object is not black

• A function sumToken that gives the sum of two integer tokens and 0
otherwise

• A function merge::color tree ∆ color that merges all colors in

a color tree (leaf is supposed to be black)

T. Genet (ISTIC/IRISA) ACF-3 18 / 19

Type abbreviations

In Isabelle/HOL, it is possible to define abbreviations for complex types
To introduce a type abbreviation . type synonym

For instance:
• type_synonym name="(string * string)"
• type_synonym (’a,’b) pair="(’a * ’b)"

Using those abbreviations, objects can be explicitly typed:
• value "(’’Leonard’’,’’Michalon’’)::name"
• value "(1,’’toto’’)::(nat,string)pair"

... though the type synonym name is ignored in Isabelle/HOL output /

T. Genet (ISTIC/IRISA) ACF-3 19 / 19

