
Analyse et Conception Formelles

Lesson 4

–
Proofs with a proof assistant

cb

T. Genet (ISTIC/IRISA) ACF-4 1 / 27

Prove logic formulas ... to prove programs
fun nth:: "nat => ’a list => ’a"
where
"nth 0 (x#_)=x" |
"nth x (y#ys)= (nth (x - 1) ys)"

fun index:: "’a => ’a list => nat"
where
"index x (y#ys)= (if x=y then 1 else 1+(index x ys))"

lemma nth_index: "nth (index e l) l= e"

How to prove the lemma nth index? (Recall that everything is logic!)

What we are going to prove is thus a formula of the form:
Theory of

lists · Equations
for nth · Equations

for index ≠æ nth index

T. Genet (ISTIC/IRISA) ACF-4 2 / 27

Outline
1 Finding counterexamples

• nitpick
• quickcheck

2 Proving true formulas
• Proof by cases: apply (case tac x)
• Proof by induction: apply (induct x)
• Combination of decision procedures: apply auto and apply simp
• Solving theorems in the Cloud: sledgehammer

Acknowledgements: some material is borrowed from T. Nipkow’s lectures
and from Concrete Semantics by Nipkow and Klein, Springer Verlag, 2016.

More details (in french) about those proof techniques can be found in:
• http://people.irisa.fr/Thomas.Genet/ACF/TPs/pc.thy
• CM4 video and “Principes de preuve avancés” video

T. Genet (ISTIC/IRISA) ACF-4 3 / 27

Finding counterexamples
Why? because «90% of the theorems we write are false!»

• Because this is not what we want to prove!
• Because the formula is imprecise
• Because the function is false
• Because there are typos...

Before starting a proof, always first search for a counterexample!

Isabelle/HOL o�ers two counterexample finders:
• nitpick: uses finite model enumeration

+ Works on any logic formula, any type and any function
- Rapidly exhausted on large programs and properties

• quickcheck: uses random testing, exhaustive testing and narrowing
- Does not covers all formula and all types

+ Scales well even on large programs and complex properties

T. Genet (ISTIC/IRISA) ACF-4 4 / 27

Nitpick

To build an interpretation I such that I ”|= „ (or I |= ¬„) nitpick

nitpick principle: build an interpretation I |= ¬„ on a finite domain D

• Choose a cardinality k

• Enumerate all possible domains D· of size k for all types · in ¬„

• Build all possible interpretations of functions in ¬„ on all D·

• Check if one interpretation satisfy ¬„ (this is a counterexample for „)
• If not, there is no counterexample on a domain of size k for „

nitpick algorithm:
• Search for a counterexample to „ with cardinalities 1 upto n

• Stops when I such that I |= ¬„ is found (counterex. to „), or
• Stops when maximal cardinality n is reached (10 by default), or
• Stops after 30 seconds (default timeout)

T. Genet (ISTIC/IRISA) ACF-4 5 / 27

Nitpick (II)
Exercise 1
By hand, iteratively check if there is a counterexample of cardinality 1, 2, 3
for the formula „, where „ is length la <= 1 .

Remark 1
• The types occurring in „ are ’a and ’a list
• One possible domain DÕa of cardinality 1: {a1}
• One possible domain DÕa list of cardinality 1: {[]} {[a1]}

Domains have to be subterm-closed, thus {[a1]} is not valid

• One possible domain DÕa of cardinality 2: {a1, a2}
• Two possible domains DÕa list of cardinality 2: {[], [a1]} and {[], [a2]}

• One possible domain DÕa of cardinality 3: {a1, a2, a3}
• Twelve possible domains DÕa list of cardinality 3: {[], [a1], [a1, a1]},

{[], [a1], [a2]}, {[], [a1], [a3, a1]}, . . . {[], [a1], [a3, a2]} (Demo!)

T. Genet (ISTIC/IRISA) ACF-4 6 / 27

Nitpick (III)
nitpick options:

• timeout=t, set the timeout to t seconds (timeout=none possible)
• show all, displays the domains and interpretations for the counterex.
• expect=s, specifies the expected outcome where s can be none (no

counterexample) or genuine (a counterexample exists)
• card=i-j, specifies the cardinalities to explore

For instance:

nitpick [timeout=120, show_all, card=3-5]

Exercise 2
• Explain the counterexample found for rev l = l
• Is there a counterexample to the lemma nth_index?

• Correct the lemma and definitions of index and nth
• Is the lemma append_commut true? really?

T. Genet (ISTIC/IRISA) ACF-4 7 / 27

Quickcheck
To build an interpretation I such that I ”|= „ (or I |= ¬„) quickcheck

quickcheck principle: test „ with automatically generated values of size k

Either with a generator
• Random: values are generated randomly (Haskell’s QuickCheck)
• Exhaustive: (almost) all values of size k are generated (TP4bis)
• Narrowing: like exhaustive but taking advantage of symbolic values

No exhautiveness guarantee!! with any of them

quickcheck algorithm:
• Export Haskell code for functions and lemmas
• Generate test values of size 1 upto n and, test „ using Haskell code
• Stops when a counterexample is found, or
• Stops when max. size of test values has been reached (default 5), or
• Stops after 30 seconds (default timeout)

T. Genet (ISTIC/IRISA) ACF-4 8 / 27

Quickcheck (II)
quickcheck options:

• timeout=t, set the timeout to t seconds
• expect=s, specifies the expected outcome where s can be

no counterexample, counterexample or no expectation
• tester=tool, specifies generator to use where tool can be random,

exhaustive or narrowing
• size=i, specifies the maximal size of testing values

For instance: quickcheck [tester=narrowing,size=6]

Exercise 3 (Using quickcheck)
• find a counterexample on TP0 (solTP0.thy, CM4_TP0)

• find a counterexample for length_slice

Remark 2
Quickcheck first generates values and then does the tests. As a result, it

may not run the tests if you choose bad values for size and timeout.

T. Genet (ISTIC/IRISA) ACF-4 9 / 27

Counter-example finders – the quiz
Quiz 1 (On (N)itpick and (Q)uickcheck counter-example finders)

• If Q/N finds a counter-example on „
V „ is contradictory

R „ is not valid

• If Q/N do not find a cex on „
V „ is valid

R We do not know anything

• Which of Q/N is the most powerful?
V Q

R N

Quiz 2 (If Isabelle/HOL accepts lemma „ closed by done)

• Then
V „ is valid

R „ is satisfiable

• There may remain some counter-example
V True

R False

T. Genet (ISTIC/IRISA) ACF-4 10 / 27

What to do next?
When no counterexample is found what can we do?

• Increase the timeout and size values for nitpick and quickcheck?
• ... go for a proof!

Any proof is faster than an infinite time nitpick or quickcheck

Any proof is more reliable than an infinite time nitpick or quickcheck
(They make approximations or assumptions on infinite types)

The five proof tools that we will focus on:
1 apply case tac
2 apply induct
3 apply auto
4 apply simp
5 sledgehammer

T. Genet (ISTIC/IRISA) ACF-4 11 / 27

How do proofs look like?
A formula of the form A1 · . . . · An is represented by the proof goal:

goal (n subgoals):
1. A1
...
n. An

Where each subgoal to prove is either a formula of the formw
x1 . . . xn. B meaning prove B, orw
x1 . . . xn. B =∆ C meaning prove B ≠æ C , orw
x1 . . . xn. B1 =∆ . . . Bn =∆ C meaning prove B1 · . . . · Bn ≠æ C

and
w

x1 . . . xn means that those variables are local to this subgoal.

Example 1 (Proof goal)
goal (2 subgoals):
1. contains e [] =∆ nth (index e []) [] = e
2.

w
a l. e ”= a =∆ contains e (a # l) =∆

¬ contains e l =∆ nth (index e l) l = e
T. Genet (ISTIC/IRISA) ACF-4 12 / 27

Proof by cases

... possible when the proof can be split into a finite number of cases

Proof by cases on a formula F
Do a proof by cases on a formula Fapply (case tac "F")
Splits the current goal in two: one with assumption F and one with ¬ F

Example 2 (Proof by case on a formula)
With apply (case tac "F::bool")
goal (1 subgoal):
1. A =∆ B

becomes
goal (2 subgoals):
1. F =∆ A =∆ B
2. ¬ F =∆ A =∆ B

Exercise 4
Prove that for any natural number x, if x < 4 then x ú x < 10.

T. Genet (ISTIC/IRISA) ACF-4 13 / 27

Proof by cases (II)
Proof by cases on a variable x of an enumerated type of size n
Do a proof by cases on a variable xapply (case tac "x")
Splits the current goal into n goals, one for each case of x.

Example 3 (Proof by case on a variable of an enumerated type)
In Course 3, we defined datatype color= Black | White | Grey
With apply (case tac "x")

goal (1 subgoal):
1. P (x::color) becomes

goal (3 subgoals):
1. x = Black =∆ P x
2. x = White =∆ P x
3. x = Grey =∆ P x

Exercise 5
On the color enumerated type or course 3, show that for all color x if the

notBlack x is true then x is either white or grey.

T. Genet (ISTIC/IRISA) ACF-4 14 / 27

Proof by induction
«Properties on recursive functions need proofs by induction»

Recall the basic induction principle on naturals:

P(0) · ’x œ N. (P(x) ≠æ P(x + 1)) ≠æ ’x œ N. P(x)

All recursive datatype have a similar induction principle, e.g. ’a lists:

P([]) · ’e œ ’a. ’l œ ’a list.(P(l) ≠æ P(e#l)) ≠æ ’l œ ’a list.P(l)

Etc...

Example 4
datatype ’a binTree= Leaf | Node ’a "’a binTree" "’a binTree"

P(Leaf) · ’e œ ’a. ’t1 t2 œ ’a binTree.
(P(t1) · P(t2) ≠æ P(Node e t1 t2)) ≠æ ’t œ ’a binTree.P(t)

T. Genet (ISTIC/IRISA) ACF-4 15 / 27

Proof by induction (II)
P([]) · ’e œ ’a. ’l œ ’a list.(P(l) ≠æ P(e#l)) ≠æ ’l œ ’a list.P(l)

Example 5 (Proof by induction on lists)
Recall the definition of the function append:

(1) append [] l = l
(2) append (x#xs) l = x#(append xs l)

To prove ’l œ ’a list. (append l []) = l by induction on l , we prove:
1 append [] [] = [], proven by the first equation of append
2 ’e œ ’a. ’l œ ’a list.

(append l []) = l ≠æ (append (e#l) []) = (e#l)
using the second equation of append, it becomes
(append l []) = l ≠æ e#(append l []) = (e#l)
using the (induction) hypothesis, it becomes
(append l []) = l ≠æ e#l = (e#l)

T. Genet (ISTIC/IRISA) ACF-4 16 / 27

Proof by induction: apply (induct x)
To apply induction principle on variable x apply (induct x)

Conditions on the variable chosen for induction (induction variable):
• The variable x has to be of an inductive type (nat, datatypes, . . .)

Otherwise apply (induct x) fails
• The terms built by induction cases should easily be reducible!

Example 6 (Choice of the induction variable)
(1) append [] l = l

(2) append (x#xs) l = x#(append xs l)
To prove ’l1 l2 œ ’a list. (length (append l1 l2)) Ø (length l2)

An induction proof on l1, instead of l2, is more likely to succeed:
• an induction on l1 will require to prove:

(length (append (e#l1) l2) Ø (length l2)
• an induction on l2 will require to prove:

(length (append l1 (e#l2)) Ø (length (e#l2))
T. Genet (ISTIC/IRISA) ACF-4 17 / 27

Proof by induction: apply (induct x) (II)

Exercise 6
Recall the datatype of binary trees we defined in lecture 3. Define and

prove the following properties:

1 If contains x t, then there is at least one node in the tree t.

2 Relate the fact that x is a sub-tree of y and their number of nodes.

Exercise 7
Recall the functions sumList, sumNat and makeList of lecture 3. Try to

state and prove the following properties:

1 Relate the length of list produced by makeList i and i
2 Relate the value of sumNat i and i
3 Give and try to prove the property relating those three functions

T. Genet (ISTIC/IRISA) ACF-4 18 / 27

Proof by induction: generalize the goals
By defaut apply induct may produce too weak induction hypothesis

Example 7
When doing an apply (induct x) on the goal P (x::nat) (y::nat)
goal (2 subgoals):
1. P 0 y
2.

w
x. P x y =∆ P (Suc x) y

In the subgoals, y is
fixed/constant!

Example 8
With apply (induct x arbitrary:y) on the same goal
goal (2 subgoals):
1.

w
y. P 0 y

2.
w

x y. P x y =∆ P (Suc x) y

The subgoals range over
any y

Exercise 8
Prove the sym lemma on the leq function.

T. Genet (ISTIC/IRISA) ACF-4 19 / 27

Proof by induction: : induction principles
Recall the basic induction principle on naturals:

P(0) · ’x œ N. (P(x) ≠æ P(x + 1)) ≠æ ’x œ N. P(x)

In fact, there are infinitely many other induction principles
• P(0) · P(1) · ’x œ N. ((x > 0 · P(x)) ≠æ P(x + 1)) ≠æ ’x œ N. P(x)
• . . .
• Strong induction on naturals

’x , y œ N. ((y < x · P(y)) ≠æ P(x)) ≠æ ’x œ N. P(x)
• Well-founded induction on any type having a well-founded order <<

’x , y . ((y << x · P(y)) ≠æ P(x)) ≠æ ’x . P(x)

T. Genet (ISTIC/IRISA) ACF-4 20 / 27

Proof by induction: : induction principles (II)

Apply an induction principle adapted to the function call (f x y z)
. apply (induct x y z rule:f.induct)

Apply strong induction on variable x of type nat

. apply (induct x rule:nat less induct)
Apply well-founded induction on a variable x
. apply (induct x rule:wf induct)

Exercise 9
Prove the lemma on function divBy2.

T. Genet (ISTIC/IRISA) ACF-4 21 / 27

Combination of decision procedures auto and simp
Automatically solve or simplify all subgoals apply auto
apply auto does the following:

• Rewrites using equations (function definitions, etc)
• Applies a bit of arithmetic, logic reasoning and set reasoning
• On all subgoals
• Solves them all or stops when stuck and shows the remaining subgoals

Automatically simplify the first subgoal apply simp
apply simp does the following:

• Rewrites using equations (function definitions, etc)
• Applies a bit of arithmetic
• on the first subgoal
• Solves it or stops when stuck and shows the simplified subgoal

T. Genet (ISTIC/IRISA) ACF-4 22 / 27

Combination of decision procedures auto and simp (II)

Want to know what those tactics do?
• Add the command using [[simp trace=true]] in the proof script
• Look in the output bu�er

Example 9
Switch on tracing and try to prove the lemma:

lemma "(index (1::nat) [3,4,1,3]) = 2"
using [[simp_trace=true]]
apply auto

T. Genet (ISTIC/IRISA) ACF-4 23 / 27

Sledgehammer Sledgehammer

129

«Sledgehammers are often used in destruction work...»

T. Genet (ISTIC/IRISA) ACF-4 24 / 27

Sledgehammer
«Solve theorems in the Cloud»

Architecture:
Formula to prove

+ relevant definitions and lemmas
Isabelle/HOL ≠æ External ATPs1

Ω≠ Local or in the Cloud
Proof (click on it)

Prove the first subgoal using state-of-the-art2 ATPs sledgehammer
• Call to local or distant ATPs: SPASS, E, Vampire, CVC4, Z3, etc.
• Succeeds or stops on timeout (can be extended, e.g. [timeout=120])
• Provers can be explicitely selected (e.g. [provers= z3 spass]
• A proof consists of applications of lemmas or definition using the

Isabelle/HOL tactics: metis, smt, simp, fast, etc.
1Automatic Theorem Provers
2See http://www.tptp.org/CASC/.
T. Genet (ISTIC/IRISA) ACF-4 25 / 27

Sledgehammer (II)
Remark 3
By default, sledgehammer does not use all available provers. But, you can

remedy this by defining, once for all, the set of provers to be used:

sledgehammer_params [provers=cvc4 spass z3 e vampire]

Exercise 10
Finish the proof of the property relating nth and index

Exercise 11
Recall the functions sumList, sumNat and makeList of lecture 3. Try to

state and prove the following properties:

1 Prove that there is no repeated occurrence of elements in the list

produced by makeList
2 Finish the proof of the property relating those three functions

T. Genet (ISTIC/IRISA) ACF-4 26 / 27

Hints for building proofs in Isabelle/HOL
When stuck in the proof of prop1, add relevant intermediate lemmas:

1 In the file, define a lemma before the property prop1
2 Name the lemma (say lem1) (to be used by sledgehammer)
3 Try to find a counterexample to lem1
4 If no counterexample is found, close the proof of lem1 by sorry
5 Go back to the proof of prop1 and check that lem1 helps
6 If it helps then prove lem1. If not try to guess another lemma

To build correct theories, do not confuse oops and sorry:
• Always close an unprovable property by oops
• Always close an unfinished proof of a provable property by sorry

Example 10 (Everything is provable using contradictory lemmas)
We can prove that 1 + 1 = 0 using a false lemma.

T. Genet (ISTIC/IRISA) ACF-4 27 / 27

