Analyse et Conception Formelles

Lesson 6

Certified Programming

®©®

T. Genet (ISTIC/IRISA) ACF-6 1/23

Outline

@ Certified program production lines
® Some examples of certified code production lines
What are the weak links?
How to certify a compiler?
How to certify a static analyzer of code?
How to guarantee the correctness of proofs?

® Methodology for formally defining programs and properties
® Simple programs have simple proofs
® Generalize properties when possible
® Look for the smallest trusted base

T. Genet (ISTIC/IRISA) ACF-6 2/23

B code production line

Proven Ada Binan
n y
Algorithms B
) Code Program Ad code
& |— B —» |Machine |—» — —_— a) _,
Properties CanewEier Compiler
C© Binary
Program code

The first certified code production line used in the industry

® For security critical code

Used for onboard automatic train control of metro 14 (RATP)

Several industrial users: RATP, Alstom, Siemens, Gemalto

T. Genet (ISTIC/IRISA) ACF-6 3/23

Scade/Astree/CompCert code production line

_ Lustre c Binary
Algorithms R'eal Code Program x86

& —> —»| Time |—>» Generator | —> — > or
Properties Prog. PPC

- Ok Frama-C
C runtime Functional
-Properties @ < -Properties —> Why —» Ok
Don't know Coq

The (next) Airbus code production line
For security critical code (e.g flight control)
Scade uses model-checking to verify programs or find counterexamples
Astree is a static analyzer of C programs proving the absence of
® division by zero, out of bound array indexing
® arithmetic overflows

® Frama-C is a proof tool for C prog. (close to Why), automated
provers like Alt-Ergo, CVC4, Z3, etc. and the Coq proof assistant
e CompCert is a certified C compiler (X. Leroy & S. Blazy, etc.)
4/23

Isabelle to Scala line

What are the weak links of such lines?

_ Proven Scala oS
Algorithms Isabelle Cod File File
Proven Scal & —> —» | Theory G © — Scalla Java
TRETEE [- e - = " Binary Properties fun... enerator Compiler byt
Propgrties - HE:OW T \Generator | —> >\ compiter | —> Jba;;lt: g Corr(|JDI-iI;er) g i code
lemma.. .| b
@ The initial choice of algorithms and properties
® Used for specification and verification of industrial size softwares @® The verification tools (analyzers and proof assistants)
e.g. Operating system kernel seL4 (C code) ©® Code generators/compilers
® Code generation not yet used at an industrial level
. . — we need some guaranties on each link!
® More general purpose line than previous ones
. Certification of compilers
e All proofs performed in Isabelle are checked by a trusted kernel o P
o I . . Certification of static analyzers
® Formalization/Verification of other parts is ongoing research 4 y
. Verification of proofs in proof assistant
e.g. some research efforts for certifying a JVM © P P
O Methodology for formally defining algorithms and properties
—> we need to limit the trusted base!
T. Genet (ISTIC/IRISA) ACF-6 5/23 T. Genet (ISTIC/IRISA) ACF-6 6/23
How to limit the trusted base? How to limit the trusted base?
Proven Proven
Static TEeRy Static Wz
Analyzer o Analyzer fun...
lemma. .. lemma...
checks checks checks checks checks checks
Compiler SlElie Proof Compiler SlEle Proof
Verifier Analyzer : Verifier Analyzer Aot
Verifier Assistant Verifier &I
The trusted base
T. Genet (ISTIC/IRISA) ACF-6 7/23 T. Genet (ISTIC/IRISA) ACF-6 8/23

How to limit the trusted base?

Proven
Static Theory
Analyzer —_—
lemma...
checks checks checks
N Y
A
Proof
Assistant

The trusted base

How to certify a compiler?

P1 P2
n in

Iangxage > » |language
B

What is the property to prove? V P1. P1 «behavesy like P2

How can we prove this?
® Need to formally describe behaviors of programs:

® Formal semantics for language A and language B
® Close to defining an interpreter (using terms and functions) (~TP4)
i.e. define evalA(prog,inputs) and evalB(prog,inputs)

® Then, prove that ¥ P1 P2 s.t. P2=compil(P1):
® Vinputs. evalA(P1,inputs) stops <— evalB(P2,inputs) stops, and
® VYinputs. evalA(P1,inputs) = evalB(P2,inputs)

® Proving this by hand is unrealistic (recall the size of Java semantics)

® Use a proof assistant... compiler is correct if the proof assistant is!

T. Genet (ISTIC/IRISA) ACF-6 9/23 T. Genet (ISTIC/IRISA) ACF-6 10/23
How to certify a static analyzer (SAn)? (TP67) Static analysis — the quiz
Progpram
T Static \ _» Ok Quiz 1
Properties = Analyzer
no BAD -7 X pon't know . . Proving a property
Behavior ® What is a static analyzer good at? —
Finding bugs
What is the property to prove?
’V P. SAn(P)=True — «nothing bad happens when executing P» . . Yes
® [s a static analyzer running the program to analyze? N
How can we prove this? ©
® Again, we need to formally describe behaviors of programs: Yes
® Formal semantics of language of P, define eval (prog,inputs) ® [s a static analyzer has access to the user inputs? H N
® \We need to formalize the analyzer and what is a «bad» behavior 0
° Formalize «bady , i.e. define a BAD predicate on program results * Given a program P, eval and BAD, can we verify by computation that
® Formalize the analyser SAn for all inputs, — BAD(eval(P,inputs))? l—! ‘ Yes H‘ B ‘ No ‘
® Then, prove that the static analyzer is safe:
vV P. Vinputs. (SAn(P)= True) — — BAD(eval(P,inputs)) ® Given a program P, and SAn can we verify by computation that
e Again, proving this by hand is unrealistic SAn(P)=True? . ‘ Yes H‘ . ‘ No ‘)
® Use a proof assistant... analyzer is correct if the proof assistant is!
11/23 12/23

How to certify a static analyzer (SAn)?

Isabelle file cm6.thy

Exercise 1
Define a static analyzer san for such programs:

san:: program = bool

(I1)

Exercise 2
Define the BAD predicate on program states:

BAD:: pgState = bool

Exercise 3

Define the correctness lemma for the static analyzer san.

T. Genet (ISTIC/IRISA) ACF-6

13/23

In the end, we managed to do this...

Proven
Static Theory
Analyzer _—
lemma...
checks checks checks
N Y
> N
Proof
Assistant

The trusted base

T. Genet (ISTIC/IRISA) ACF-6 14 /23

How to guarantee correctness of proofs in

proof assistants?

\ \ // Proven

Algorithms Isabelle
& —> —» | Theory
Properties fun...

lemma.. .

How to be convinced by the proofs done by a proof assistant?

® Relies on complex algorithms
® Relies on complex logic theories

® Relies on complex decision procedures

— there may be bugs everywhere!

T. Genet (ISTIC/IRISA) ACF-6

15/23

Weak points of proof assistants

A proof in a proof assistant is a tree whose leaves are axioms

True Difference with a proof on paper:
610 .
[® Far more detailed
True True \V True .
99 08 97 96 ® A lot of axioms
\ ;True \ . ® Shortcuts: External decision
3 : L LI g procedures
\ A 2
o e T 02 : Axioms = fewer details
\({ Decision Proc. = automatization

Axioms and decision procedures are the main weaknesses of proof assistants

Choices made in Coq, Isabelle/HOL, PVS, ACL2, etc. are very different

T. Genet (ISTIC/IRISA) ACF-6 16 /23

Proof handling : differences between proof assistants

Proof checking: how is it done in Isabelle/HOL?

Isabelle/HOL have a well defined and «small » trusted base
® A kernel deduction engine (with Higher-order rewriting)
® Few axioms for each theory (see HOL.thy, HOL/Nat.thy)

’ | Coq | PVS | Isabelle [ACL2 ‘ ® QOther properties are lemmas, i.e. demonstrated using the axioms
Axioms minimum | free minimum free . . .
and fixed and fixed All proofs are carried out using this trusted base:
Decision proofs trusted proofs trusted ® Proofs directly done in Isabelle (auto/simp/induct/...)
procedures checked | (no check) | checked (no check) ® All proofs done outside (sledgehammer) are re-interpreted in Isabelle
by Coq by Isabelle using metis or smt that construct an Isabelle proof
Proof terms built-in no additional | no |
System basic in between | in between | good Example 1
automatization Prove the lemma (x + 4) * (y +5) > x * y using sledgehammer.
Counterexample | basic basic yes yes @ Interpret the found proof using metis
generator
® Switch on tracing: add
using [[simp_trace=true,simp_trace_depth_limit=5]]
before the apply command
© Re-interpret the proof
17/23 18/23
Outline Simple programs have simple proofs : Simple is beautiful
Example 2 (The intersection function of TP2/3)
. o An «optimized» version of intersection is harder to prove. J
@ Certified program production lines
® Some examples of certified code production lines . . . L
e What are the weak links? @ Program function f (x) as simply as possible... no optimization yet!
® How to certify a compiler? ® Use simple data structures for x and the result of £ (x)
® How to certify a static analyzer of code? ¢ Use simple computation methods in £
® How to guarantee the correctness of proofs?
® Prove all the properties 1em1, 1lem2, ... needed on f
® Methodology for formally defining programs and properties i e) ¢
@ Simple programs have simple proofs o (neces'sa'ry) program'fopt (x) an optimized version of £
@® Generalize properties when possible ® Optimize computation of fopt
© Look for the smallest trusted base ® Use optimized data structure if necessary
@ Prove that V x. f(x)=fopt(x)
@ Using the previous lemma, prove again lemi, lem2, ... on fopt
19/23 20/23

Simple programs have simple proofs (II)

Exercise 4

The function fastReverse is a tail-recursive version of reverse. Prove
the classical lemmas on fastReverse using the same properties of
reverse:

e fastReverse (fastReverse 1)=1

® fastReverse (11012)= (fastReverse 12)@(fastReverse 11)

Exercise 5

Prove that the fast exponentiation function fastPower enjoys the classical
properties of exponentiation:

[] Xy *XZ = X(y+z)

* (xxy)* =x"xy*

[Xyz = X(Y*Z)

T. Genet (ISTIC/IRISA) ACF-6 21/23

Generalize properties when possible
Exercise 6 (On List.member and intersection of TP2/3)

® Prove that ((List.member 11 e) A (List.member 12 e)) —
(List.member (intersection 11 12) e)
® How to generalize this property?

® What is the problem with the given function intersection?

Exercise 7 (On function clean of TP2/3)
® Prove that clean [x,y,x]=[y,x]
® How to generalize this property of clean?

e What is the problem with the given definition of function clean?

Exercise 8 (On functions List .member and delete of TP2/3)
® Try to prove that

List.member 1 x — List.member 1 y — x#y —
(List.member (delete y 1) x)
2/23

Limit the trusted base in your Isabelle theories
Trusted base = functions that you cannot prove and have to trust
Basic functions on which lemmas are difficult to state
To verify a function £, define lemmas using £ and:
® functions of the trusted base

® other proven functions

Example 3
In TP2/3, which functions can be a good trusted base?

Remark: There can be some interdependent functions to prove!

Example 4 (Prove a parser and a prettyPrinter on programs)
® parser:: string = prog
® prettyPrinter:: prog — string
The property to prove is: V p. parser(prettyPrinter p) = p
prettyPrinter is more likely to be trusted since it is simpler
e

