Analyse et Conception Formelles

Lesson 7

Program verification methods

Outline

@ Testing

® Model-checking
© Assisted proof

O Static Analysis

@ A word about protoypes/models, accuracy, code generation

®@®
1/37 2/37
Disclaimer The basics
Definition 2 (Specification)
: A complete description of the behavior of a software.
Theorem 1 (Rice, 1953) ’
Any nontrivial property about the language recognized by a Turing Definition 3 (Oracle)
machine is undecidable. An oracle is a mechanism determining whether a test has passed or failed,
w.r.t a specification.
“The more you prove the less automation you have”
Definition 4 (Domain (of Definition))
The set of all possible inputs of a program, as defined by the specification.
3/37 T. Genet (ISTIC/IRISA) ACF-7 4/37

Notations

Spec
Mod
Source
EXE

D

Oracle
D#
Source™
Oracle?”

the specification

a formal model or formal prototype of the software
the source code of the software

the binary executable code of the software

the domain of definition of the software

an oracle

an abstract definition domain
an abstract source code

an abstract oracle

T. Genet (ISTIC/IRISA) ACF-7 5/37

Testing principles

Spec

-

EXE|[—%oracle

3]

%zz

T. Genet (ISTIC/IRISA) ACF-7 6/37

Testing principles (random generators)

Spec

Test

Random

Generator

EXE|7—>%oracle

—3

This is what Isabelle/HOL quickcheck does (and TP4Bis)

T. Genet (ISTIC/IRISA) ACF-7 7/37

Testing principles (white box testlng

Spec
Random
Test
Generator
EXE Y oracle
Source . :
3

Definition 5 (Code coverage)

The degree to which the source code of a program has been tested, e.g. a
statement coverage of 70% means that 70% of all the statements of the
software have been tested at least once.

T. Genet (ISTIC/IRISA) ACF-7 8/37

Demo of white box testing in Evosuite

Objective: cover 100% of code (and raised exceptions)

Example 6 (Program to test with Evosuite)

public static int Puzzle(int[] v, int i){
if (v[il>1) {
if (v[i+2]==v[il+v[i+1]) {
if (v[i+3]==v[i]+18)
throw new Error("hidden bug!");
else return 1;}
else return 2;}
else return 3;

}

T. Genet (ISTIC/IRISA) ACF-7 9/37

Demo of white box testing in Evosuite
Generates tests for all branches (1, 2, 3, null array, hidden bug, etc)

One of the generated JUnit test cases:

Q@Test (timeout = 4000)
public void test5() throws Throwable {
int[] intArray0 = new int[18];

intArrayO[1] = 3;

intArray0[3] = 3;

intArray0[4] = 21; // an array raising hidden bug!
try {

Main.Puzzle(intArray0, 1);
fail("Expecting exception: Error");
} catch(Error e) {
verifyException("temp.Main", e);
}
}

T. Genet (ISTIC/IRISA) ACF-7 10/37

Testing, to sum up

Strong and weak points
+ Done on the code — Finds real bugs!
+ Simple tests are easy to guess
— Good tests are not so easy to guess! (Recall TP0?)

+ Random and white box testing automate this task. May need an
oracle: a formula or a reference implementation.

— Finds bugs but cannot prove a property

+ Test coverage provides (at least) a metric on software quality

Some tool names
Klee, SAGE (Microsoft), PathCrawler (CEA), Evosuite, many others . ..

v

One killer result

SAGE (running on 200 PCs/year) found 1/3 of security bugs in Windows 7
https://www.microsoft.com/en-us/security-risk-detection/

4

T. Genet (ISTIC/IRISA) ACF-7 11/37

Model-checking principles

e

Spec
i

Finite

Mod

Where = is the usual logical consequence. This property is not shown by
doing a logical proof but by checking (by computation) that ...

T. Genet (ISTIC/IRISA) ACF-7 12/37

Model-checking principles (II)

-

Spec

Finite

Mod

Where D, Mod and Oracle are finite.

T. Genet (ISTIC/IRISA) ACF-7 13/37

Model-checking principle explained in Isabelle/HOL

Automaton digiCode.as and Isabelle file cm7.thy

Exercise 1

Define the lemma stating that whatever the initial state, typing A,B,C
leads execution to Final state.

Exercise 2

Define the lemma stating that the only possibility for arriving in the Final
state by typing three letters is to have typed A,B,C.

T. Genet (ISTIC/IRISA) ACF-7 14 /37

Model-checking, to sum-up

Strong and weak points
+ Automatic and efficient
+ Can find bugs and prove the property
— For finite models only (e.g not on source code!)

+ Can deal with huge finite models (1020 states)
More than the number of atoms in the universe!

+ Can deal with finite abstractions of infinite models e.g. source code

— Incomplete on abstractions (but can find real bugs!)

Some tool names

SPIN, SMV, (bug finders) CBMC, SLAM, ESC-Java, Java path finder, ...

One killer result
INTEL processors are commonly model-checked

T. Genet (ISTIC/IRISA) ACF-7 15/37

Assisted proof principles

Where = is the usual logic consequence. This is proven directly on
formulas Mod and Spec. This proof guarantees that...

T. Genet (ISTIC/IRISA) ACF-7 16 /37

Assisted proof principles (II)

&

Spec

> Mod

Where D, Mod, Oracle can be infinite.

T. Genet (ISTIC/IRISA) ACF-7 17/37

Assisted proof, to sum-up

Strong and weak points
+ Can do the proof or find bugs (with counterexample finders)
+ Proofs can be certified
— Needs assistance
— For models/prototypes only (not on source nor on EXE)

+ Proof holds on the source code if it is generated from the prototype

Some tool names
B, Coq, Isabelle/HOL, ACL2, PVS, ... Why, Frama-C, ...

One killer result
CompCert certified C compiler

T. Genet (ISTIC/IRISA) ACF-7 18 /37

Static Analysis principles

#
Source Oracle Oracle

Where abstraction v~ is a correct abstraction

T. Genet (ISTIC/IRISA) ACF-7 19/37

Static Analysis principles (I1)

#
Source Oracle

[J
Static Analyzer .3

Where abstraction v~ is a correct abstraction

e

T. Genet (ISTIC/IRISA) ACF-7 20 /37

Static Analysis principles — Abstract Interpretation (II)

The abstraction '~~~ is based on the abstraction function abs:: D = D#

Depending on the verification objective, precision of abs can be adapted

Example 7 (Some abstractions of program variables for D=int)
(1) abs:: int = { L, T} where | = “undefined” and T = “any int"
(2) abs:: int = {1,Neg, Pos, Zero, NegOrZero, PosOrZero, T}

(3) abs:: int = {1} U Intervals on Z

Example 8 (Program abstraction with abs (1), (2) and (3))

(1) (2) (3)

x:= y+1; x=1 x=1 x=1

read(x) ; x=T x=T x=]-00;+0[
y:= x+10 y=T y=T y=1-00;+0 [
u:= 15; u=1l u=Pos u=[15;15]

x:= |x]| x=1 x=Pos0rZero x=[0;+0[

u:= x+u; u=71 u=Pos u=[15;+00[

e

Static Analysis: proving the correctness of the analyzer

BE

Spec

#
Source

Static Analyzer

® Formalize semantics of Source language, i.e. formalize an eval

Formalize the oracle: BAD predicate on program states

e Formalize the abstract domain D#

Formalize the static analyser SAn:: program = bool
* Prove correctness of SAn: V P. SAn(P) — (— BAD(eval(P)))

¢ ... Relies on the proof that ~~ is a correct abstraction

T. Genet (ISTIC/IRISA) ACF-7 22/37

Static Analysis principle explained in Isabelle/HOL

To abstract int, we define absInt as the abstract domain (D7):

Any
P N
Neg Zero Pos
~ | 7
Undef

datatype absInt= Neg|Zero|Pos|Undef |Any

Remark 1

Have a look at the concretization function (called concrete) defining sets
of integers represented by abstract elements Neg, Zero, etc.

v

Exercise 3

Define the function absPlus:: absInt = absInt = absInt (noted +7)

Exercise 4 (Prove that +7 is a correct abstraction of +)

x € concrete(x?) Ay € concrete(y?) — (x +y) € concrete(x? +7 y?)

V.

T. Genet (ISTIC/IRISA) ACF-7 23/37

Static Analysis, to sum-up

Strong and weak points
+ Can prove the property
+ Automatic
+ On the source code

— Not designed to find bugs

Some tool names
Astree (Airbus), Polyspace, Infer (Meta, though unsound and incomplete)

4

Two killer results

* Astree is used to successfully analyze 10° lines of code of the Airbus
A380 flight control system

® Millions of lines of Meta's production code are journally reviewed by
the infer static analyzer

T. Genet (ISTIC/IRISA) ACF-7 24 /37

To sum-up on all presented techniques

Automation

Static Analysis

Testing Model-Checking

Expressivity

Assisted Proof

® Some properties are too complex to be verified using a static analyzer
® Testing can only be used to check finite properties

Model-checking deals only with finite models (to be built by hand)

Static analysis is always fully automatic

T. Genet (ISTIC/IRISA) ACF-7 25/37

To sum-up on all presented techniques

Accuracy

Testing

Static Analysis

Guarantee

Model{Checking Assisted Proof

e Testing works on EXE, Static analysis on source code, others on
models/prototypes

® Model-checking, assisted proof and static analysis have a similar
guarantee level except that assisted proofs can be certified

T. Genet (ISTIC/IRISA) ACF-7 26 /37

A word about models/prototypes

Program verification using “formal methods” relies on:

has a Property

Abstraction Abstraction

Prototype — Logic Formula

This is the case for model-checking and assisted proof.

T. Genet (ISTIC/IRISA) ACF-7 27 /37

Testing prototypes is a common practice in engineering

It is crucial for early detection of problems! Do you know Tacoma bridge?

T. Genet (ISTIC/IRISA) ACF-7 28 /37

Testing prototypes is an engineering common practice (II)
More and more, prototypes are mathematical /numerical models

If the prototype is accurate: any detected problem is a real problem!
Problem on the prototype — Problem on the real system
But in general, we do not have the opposite:

No problem on the prototype +— No problem on the real system

T. Genet (ISTIC/IRISA) ACF-7 29/37

Why code exportation is a great plus?
Code exportation produces the program from the model itself!

has a Property

‘ ‘ Abstraction

Prototype # Logic Formula

Thus, we here have a great bonus: [TP5, TP67, TP89, CompCert]

No problem on the prototype — No problem on the real system
If the exported program is not efficient enough it can, at least, be used as

a reference implementation (an oracle) for testing the optimized one.

T. Genet (ISTIC/IRISA) ACF-7 30/37

Abstraction
-

About "Property Logic formula”

This is the only remaining difficulty, and this step is necessary!

Back to TPO, it is very difficult for two reasons:

@ The “what to do” is not as simple as it seems
® Many tests to write and what exactly to test?
® How to be sure that no test was missing?
® | ack of a concise and precise way to state the property
Defining the property with a french text is too ambigous!

® The “how to do” was not that easy

Logic Formula = factorization of tests
® guessing 1 formula is harder than guessing 1 test
® guessing 1 formula is harder than guessing 10 tests
e guessing 1 formula is not harder than guessing 100 tests
* guessing 1 formula is faster than writing 100 tests (TPO in Isabelle)
® proving 1 formula is stronger than writing infinitely many tests

T. Genet (ISTIC/IRISA) ACF-7 31/37

About formal methods and security

You have to use formal methods to secure your software
... because hackers will use them to find new attacks!

Be serious, do hackers read scientific papers?

or use academic stuff?

Yes, they do!
32/37

Hackers do read scientific papers!

Hackers do read scientific papers!
Chip and PIN is Broken s C.onfe rence. Chip and PIN is Broken Conference
ecurity and Privacy Security and Privacy
Steven J. Murdoch, Saar Drimer, Ross Anderson, Mike Bond 2010 i .
University of Cambridge Steven J. Murdoch, S?ar [?rlmer' Ross Anderson, Mike Bond 20 10
Computer Laboratory 1 3 pages Ug{versn;y ojl";,;]ambtndgc
P ‘omputer Laboratory
Cambridge, UK Cambridge, UK 13 pageS
issuer terminal card EMV command protocol phase
seket fle IPAY.SYS.DDFOL_ } They revealed a weakness in the payment protocol of EMV
available applications (e.g Credit/Debit/ AT M) SELECT/READ RECORD
celoct application/start transaction seLeCT Cord mthertcaton They showed how to make a payment with a card without knowing the PIN
GET PROCESSING OPTIONS
signed records, Sig(signed records)
unsigned records READ RECORD...
PIN retry counter } GET DATA
PIN: XXXX Cardholder verification
PIN OK/Not OK VERIFY
T = (amount, currency, date, TVR, nonce, ...)
ARQC = (ATC, IAD, MAC(T, ATC, 1AD)) [CENERATE AC
T, ARQC
ARPC, ARC Transaction authorization
ARPC, auth code } EXTERNAL AUTHENTICATE/
TC = (ATC, IAD, MAC(ARC, T, ATC, IAD)) [GENERATE AC
—_—TC
2/ /7
Hackers do read scientific papers! Hackers do read scientific papers!
‘When Organized Crime Applies Academic Results When Organized Crime Applies Academic Results
A Forensic Analysis of an In-Card Listening Device Journal of A Forensic Analysis of an In-Card Listening Device Journal of
Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria Cryptogra ph IC Engl neerlng Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria Cryptogra ph Ic Engl neer ng
1 Ficole normale supérieure 2015 ! Fcole normale supérieure 2015
Computer Science Department Computer Science Department
45 rue d’Ulm, F-75230 Paris CEDEX 05, France

T. Genet (ISTIC/IRISA)

35/37

45 rue d'Ulm, ¥-75230 Paris CEDEX 05, France

Criminals used the attack of Murdoch & al. but not:

T. Genet (ISTIC/IRISA) | ACF-7

36 /37

About formal methods and security

You have to use formal methods to secure your software
... because hackers will use them to find new attacks!

(1 formula) + (counter-example generator) — attack!
® Fuzzing of implementations using model-checking
* Finding bugs (to exploit) using white-box testing

* Finding errors in protocols using counter-example gen. (e.g. TP89)

= You will have to formally prove security of your software!

T. Genet (ISTIC/IRISA) ACF-7 37/37

