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Analyse et Conception Formelles

Lesson 1

Propositional logic
First order logic

T. Genet (ISTIC/IRISA) ACF-1 1/33

Bibliography
® Cours de logique, préparation a I'agrégation, C. Paulin,
https://www.lri.fr/~paulin/Agreg/predicat.pdf

® Cours de logique LOG, S. Pinchinat,
https://people.irisa.fr/Sophie.Pinchinat/L0G.html

® [ogique et fondements de I'informatique de Richard Lassaigne et
Michel de Rougemont. Hermes 1993.

A selected bibliography on the Isabelle/HOL prover and Scala
® http://people.irisa.fr/Thomas.Genet/ACF/Bibliography/

The web page of the course
® http://people.irisa.fr/Thomas.Genet/ACF

Solutions of Isabelle/HOL exercises (uploaded after each lecture)
® http://people.irisa.fr/Thomas.Genet/ACFSol

Acknowledgements

® Many thanks to T. Nipkow, J. Blanchette, L. Bulwahn and G. Riou

for providing material, answering questions and for fruitful discussions.
T. Genet (ISTIC/IRISA) ACF-1 2/33

Outline

e Why using logic for specifying/verifying programs?
® Propositional logic
® Formula syntax

® [nterpretations and models
® |sabelle/HOL commands

® First-order logic

® Formula syntax
® [nterpretations and models
® |sabelle/HOL commands
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Why using logic for specifying /verifying programs?
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Why using functional paradigm to program?
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Why using functional paradigm to program?
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Propositional logic: syntax and interpretations

Definition 1 (Propositional formula)

Let P be a set of propositional variables. The set of propositional formula
is defined by

pu=p| ¢ | d1Vor | pr1AP2 | o1 —> 2  wherepec P

Definition 2 (Propositional interpretation)

An interpretation | associates to variables of P a value in {True,False}.

Example 3

Let ¢ = (p1 A p2) —> p3. Let I be the interpretation such that
I[p1] = True, I[p2] = True and /[p3] = False.

T. Genet (ISTIC/IRISA) ACF-1

Propositional logic: syntax and interpretations (I1)

We extend the domain of / to formulas as follows:

) True iff I[¢] = False
el = { False iff /[¢] = True

o1V ¢2] = True iff I[¢p1] = True or [[¢o] = True
o1 A ¢2] = True iff I[¢1] = True and /[¢p2] = True

I[¢1] = False or

l[¢1 — ¢2] = True iff { I[¢1] = True and /[¢2] = True

Example 4

Let ¢ = (p1 A p2) — p3 and [ the interpretation such that /[p;]] = True,
I[p2] = True and /[p3] = False.

We have I[p1 A p2] = True and /[(p1 A p2) — p3] = False.
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Propositional logic: syntax and interpretations (IlI)

The presentation using truth tables is generally preferred:

a ‘ b H avb
a H —a False | False || False
False || True True | False || True
True || False False | True True
True | True True
a ‘ b H anb a ‘ b H a—b>b
False | False || False False | False True
True | False || False True | False || False
False | True || False False | True True
True | True True True | True True
13/33

Propositional logic: models

Definition 5 (Propositional model)
I is a model of ¢, denoted by | = ¢, if I[¢] = True.

Definition 6 (Valid formula/Tautology)
A formula ¢ is valid, denoted by = ¢, if for all | we have | |= ¢.

Example 7

Let ¢ = (p1 A p2) — p3 and ¢’ = (p1 A p2) —> p1. Let I be the
interpretation such that /[p;] = True, /[p2] = True and /[p3] = False.

We have | £ ¢, | = ¢/, and = ¢/,
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Propositional logic: decidability and tools in Isabelle/HOL

Property 1

In propositional logic, given ¢, the following problems are decidable:
o sk ¢?
® s there an interpretation | such that | |= ¢?
® s there an interpretation | such that | = ¢?

o

® To automatically prove that =@ ...................... apply auto
(if the formula is not valid, there remains some unsolved goals)
® To build I such that I £ (or = =) oot nitpick

(i.e. find a counterexample... may take some time on large formula)

Other useful commands

® To close the proof of a proven formula......................... done
® To abandon the proof of an unprovable formula ............... oops
® To abandon the proof of (potentially) provable formula ....... sorry
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Writing and proving propositional formulas in Isabelle/HOL

Example 8 (Valid formula)

lemma "(p1 /\ p2) -—> p1"
apply auto
done

Example 9 (Unprovable formula)
lemma "(pl /\ p2) --> p3"

nitpick
oops
v
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Isabelle/HOL: ASCII notations

Symbol | ASCII notation
True True
False False
A /\

V \/
7& ~=
— -—>

— =
A ALL
= ?
A yA

See the Isabelle/HOL's cheat sheet at the end of the document!

Propositional logic: exercises in Isabelle/HOL

Exercise 1

Using Isabelle/HOL, for each formula, say if it is valid or give a
counterexample interpretation, otherwise.

® AVB
® (AANB)— -C)V(A—B) — A—C

© If it rains, Robert takes his umbrella. Robert does not have his
umbrella hence it does not rain.

0 (A— B) +— (mAVB)

17/33 18/33
First-order logic (FOL) / Predicate logic First-order logic: terms
Definition 10 (Terms)
Let F be a set of symbols and ar a function such that ar : ¥ = N
associating each symbol of F to its arity (the number of parameter). Let
X be a variable set.
@ Terms and Formulas }
® Interpretation The set T(F, X), the set of terms built on F and X, is defined by:
P > T(F.X) =X U{f(t1,....ta) | ar(f)=nand t1,... t, € T(F,X)}.
©® Models
O Logic consequence and verification Example 11
Let F={f:1,g:2,a:0,b:0} and X = {x,y, z}.
f(x), a, z g(g(a,x),f(a)), g(x,x) are terms and belong to T (F, X).
f, a(b), f(a,b), x(a), f(a,f(b)) do not belong to T(F,X).
In term f(a, f(b)), terms a, f(b), and b are called subterms of (a, f(b)).
19/33 20/33




First-order logic: formula syntax

First-order logic syntax: the quiz

Definition 12 (Formulas)
Let P be a set of predicate symbols all having an arity, i.e. ar : P = N. Quiz 1
The set of formulas defined on F, X and P is: Let P={p:1,q:2,<:2}, F={f:1,g:2,2:0} and X = {x,y, z}.
G=—¢ | ¢1Vhy | d1Ad | d1 — dn | Vx.p | Ix.d | p(te,. .., tn) o aisaterm [ [V | True || Ml | False ]
where t1,...,t, € T(F,X), x€X, peP and ar(p)=n. ® x is aterm F.‘ True H‘.‘ False‘
* f(g(a)) is a term m ‘ True H‘ R ‘ False ‘
Example 13 v ) m = I
° . t
Let P={p:1,q:2,<:2}, F={f:1,g:2,a:0} and X = {x,y, z}. XX ls aterm ‘ ruem ‘ ase‘
The following expressions are all formulas: ® Vx.x is a formula \—! ‘ True H‘ R ‘ False ‘
* p(f(a)) ® p(f(g(a,x))) is a formula m ‘ True H‘ . ‘ False ‘
* q(g(f(a),x),y) ® Vx.p(x) Ax <y is a formula m ‘ True H‘ R ‘ False ‘
® Vx.dy.y <x
® VxVyVzx<yANy<z—x<z
21/33 22/33
Interlude: a touch of lambda-calculus Interlude: a touch of lambda-calculus (in Isabelle HOL)
We need to define anonymous functions
e Classical notation for functions Isabelle/HOL also use function update using (:=) as in:
f:NxN=N or, for short, f:N?= N ® (Ax.x)(0:=1,1:= 2) the identity function except for 0 that is
f(x,y)=x+y f(x,y)=x+y mapped to 1 and 1 that is mapped to 2
e Lambda-notation of functions ® (Ax._)(a:= b) a function taking one parameter and whose result is
fF N2 = N unspecified except for value a that is mapped to b
F = Mx,y).x +y
‘ Predicates in Isabelle/HOL
AX y. X + y is an anonymous function adding two naturals ® A predicate is a function mapping values to {True,False}
This corresponds to For instance the predicate p on {a, b}
e fun x y —-> x+y in OCaml/Why3 p =(Ax._)(a := False, b := False) )
® (x: Int, y:Int) => x + yin Scala
23/33 24/33




First-order formulas: interpretations and valuations

Definition 14 (First-order interpretation)
Let ¢ be a formula and D a domain. An interpretation | of ¢ on the
domain D associates:

® a function f; : D" = D to each symbol f € F such that ar(f) = n,

® a function p; : D" = {True,False} to each predicate symbol p € P
such that ar(p) = n.

Example 15 (Some interpretations of ¢ = Vx.ev(x) — od(s(x)))
® | et / be the interpretation such that domain D = N and
s;=Ax.x+1 evy = Ax.((x mod 2) =0) od; = Ax.((x mod 2) =1)
e Let I be the interpretation such that domain D = {a, b} and
sy = Mx.if x=athenbelsea evy =Ax.(x=a) ody = \x.False

Definition 16 (Valuation)
Let D be a domain. A valuation V is a function V : X = D.

T. Genet (ISTIC/IRISA) ACF-1 25/33

First-order logic: interpretations and valuations (I1)

Definition 17
The interpretation / of a formula ¢ for a valuation V is defined by:
e (LV)[x]=V(x)ifxeX
o (I,V)[f(t,...,ta)] = (1, V)[ta],-.., (I, V)[ta]) if f € F and
ar(f)=n
e (/a(V))HP(tl,---,tn)]] = pi((, V)[ta], -, (1, V)[ta]) if p € P and
ar(p) =n
® (I,V)[¢1V ¢2] = True iff (I, V)[¢1] = True or (I, V)[¢2] = True
® etc...
o (LV)Ivxgl = N\ (I V +{x = d})[¢]
deD
o (LV)Bxgl = \/ (I, V +{x = d})[¢]
deD
where (V + {x— d})(x) =d and (V + {x — d})(y) = V(y) if x # y.
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First-order logic: satisfiability, models, tautologies

Definition 18 (Satisfiability)
I and V satisfy ¢ (denoted by (1, V) = ¢) if (I, V)[¢] = True.

Definition 19 (First-order Model)

An interpretation / is a model of ¢, denoted by / = ¢, if for all valuation
V we have (/, V) = ¢.

Definition 20 (First-order Tautology)

A formula ¢ is a tautology if all its interpretations are models,
i.e. (I,V) [ ¢ for all interpretations / and all valuations V.

Remark 1
Free variables are universally quantified (e.g. P(x) equivalent to Vx. P(x))

T. Genet (ISTIC/IRISA) ACF-1 27/33

First-order logic: decidability and tools in Isabelle/HOL

Property 2
In first-order logic, given ¢, the following problems are undecidable:
° IskE=¢7?
® [s there an interpretation | (and valuation V') such that (I, V) |= ¢7
® [s there an interpretation | (and valuation V') such that (I, V) = ¢7 )

® Try to automatically prove ¢ ... apply auto
Uses decision procedures (e.g. arithmetic) to try to prove the formula.

If it does not succeed, it does not mean that the formula is
unprovable!

® Try to build / and V such that (I, V) o ..ot nitpick

If it does not succeed, it does not mean that there is no
counterexample!

T. Genet (ISTIC/IRISA) ACF-1 28/33




First-order logic: exercises in Isabelle/HOL

Exercise 2

Using Isabelle/HOL, for each formula, say if it is valid or give a
counterexample interpretation and valuation otherwise.

@ Vx. p(x) — Ix.p(x)

® Ix. p(x) — Vx.p(x)

© Vx. ev(x) — od(s(x))
OVxy.x>y—x+1>y+1

x>y —x+1>y+1

O Vmn (-(m<nAm<n+1l)— m=n
@ Vx.dy.x+y=0

® Vy. (=p(f(y))) <— p(f(y))

® Y. (p(F(y)) — p(F(y +1)))

T. Genet (ISTIC/IRISA) ACF-1 29/33

Isabelle/HOL notations: priority, associativity, shorthands

® Here are the logical operators in decreasing order of priority:
e = AV, — V3
® «a prioritary operator first chooses its operands»

For instance
® ——P = P means ~—(P = P) !
® ANB=BAAmeans AA(B=B)AAl
® P AVx.Q(x) will be parsed as (P A V)x.Q(x) !
Hence, write P A (Vx.Q(x)) instead!

All binary operators are associative to the right, for instance
A — B — Cis equivalent to A — (B — ()

Nested quantifications Vx.Vy. Vz. P can be abbreviated into Vx y z. P

Free variables are universally quantified, i.e. P(x) is equiv. to
Vx. P(x)

All Isabelle/HOL tools will prefer P(x) to Vx. P(x)

T. Genet (ISTIC/IRISA) ACF-1 30/33

First-order logic: satisfiability and models

Definition 21 (Satisfiable formula)

A formula ¢ is satisfiable if there exists an interpretation / and a valuation
V such that (/, V) E ¢.

Example 22
Let ¢ = p(f(y)) with F ={f : 1}, P={p: 1}, X = {y}.
The formula ¢ is satisfiable (there exists (/, V) such that (/, V) = ¢)
® Let / be the interp. s.t. D ={0,1}, p;=Ax.(x=0), fi=Ax.x
® Let V be the valuation such that V(y) =0
We have (1, V) E ¢. With V'(y) =1, (I, V') £ ¢. Hence, I is not a
model of ¢.
® Let /' be the interp. s.t. D={0,1}, pr=Ax.(x=0), fr=Ax.0
We have (I', V) | ¢ for all valuation V/, hence I’ is a model of ¢.

T. Genet (ISTIC/IRISA) ACF-1 31/33

Satisfiability — the quiz

Quiz 2

Let P={p:1}, F={f:1,a:0,b:0} and X = {x}.
e f(a) is satisfiable m ‘ True H‘ R ‘ False ‘
® p(f(a)) is satisfiable m ‘ True H‘ R ‘ False ‘
® p(f(x)) is satisfiable m ‘ True H‘ B ‘ False ‘
® p(f(x)) is a tautology l—! ‘ True H‘ . ‘ False ‘

e —p(f(x)) is satisfiable m ‘ True H‘ ‘ False ‘
e —p(f(x)) A p(f(x)) is satisfiable m ‘ True H‘ ‘ False ‘
® p(f(a)) — p(f(b)) is satisfiable m ‘ True H‘ ‘ False ‘
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First-order logic: contradictions

Definition 23 (Contradiction)

A formula is contradictory (or unsatisfiable) if it cannot be satisfied,
i.e. (I, V) [~ ¢ for all interpretation / and all valuation V.

Property 3
A formula ¢ is contradictory iff —¢ is a tautology.

Example 24 (See in Isabelle cm1.thy file)

Let ¢ = (Yy.—=p(f(y))) «— (Vy.p(f(y))). The formula ¢ is contradictory
and —¢ is a tautology.

4
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Analyse et Conception Formelles

Lesson 2

Types, terms and functions

Outline

® Terms
® Types
® Typed terms
® \-terms
® Constructor terms

® Functions defined using equations

® |ogic everywhere!
® Function evaluation using term rewriting
® Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures

®©®
1/3 2/34
Types: syntax Typed terms: syntax
term = (term)
| a aeForackX
— () |  term term function application
Toe= 7 | Ay. term function definition with y € X

|  bool | nat | char | ... base types | (term term) tuples
| 'a|'b | ... type variables Y .
| N functi | [term,..., term| lists

=T unctions - | (term:: 1) type annotation
| 7x...x7T tuples (ascii for x: *) | 2 lot of syntactic sugar
| 7 list lists

user-defined types

The operator = is right-associative, for instance:

nat = nat = bool is equivalent to nat = (nat = bool)

T. Genet (ISTIC/IRISA) ACF-2 3/34

Function application is left-associative, for instance:

f abcis equivalent to ((f a) b) ¢

Example 1 (Types of terms)

Term Type Term Type
y 'a tl 'a
(t1,t2,t3) | ("a x 'b x "¢ ||| [t1,t2,t3] "a list
Ay y 'a="a Ayz. z |'a='b="b
T. Genet (ISTIC/IRISA) ACF-2 4/34




Types and terms: evaluation in Isabelle/HOL

value "t"

To evaluate a term tin Isabelle ....... .. ... ... ... ... .. ........
Example 2
Term Isabelle’s answer
value "True" True::bool
value "2" Error (cannot infer result type)
value "(2::nat)” 2::nat

value "[True,False]” [True,False]::bool list

value "[2,6,10]"
value "[(2::nat),6,10]"

[2,6,10]::nat list

value "(True, True,False)” | (True, True,False)::bool * bool * bool
Error (cannot infer result type)

T. Genet (ISTIC/IRISA) ACF-2
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Terms and functions: semantics is the A-calculus
Semantics of functional programming languages consists of one rule:

(5-reduction)

where t{x — a} is the term t where all occurrences of x are replaced by a

(Ax.t)a —p t{x— a}

Example 3
o Ax.x+1)10 —5 10+1
® AxAy.x+y)12 =g (Ay.14+y)2 —g 142
* (A(xy)-y)(1,2) —p 2

In Isabelle/HOL, to be S-reduced, terms have to be well-typed

Example 4
Previous examples can be reduced because:
® (Ax.x+1):nat = nat and 10 :: nat
® (Ax.\y.x+y):nat= nat=nat and 1: nat and 2: nat
® (A(x,y).y):(lax'b)="b and (1,2): natx nat
6/34

Lambda-calculus — the quiz

Quiz 1

® Function \(x,y). x is a function with two parameters

m ‘ True m . ‘ False ‘

’a X b = ’a

® Type of function \(x,y). x is F=

’a = ’b =

’a

® [ff::nat = nat = nat how to call f on1 and 27

(Mlta,[IM] ¢ 1 2]

® [ff::nat X nat = nat how to call £ on 1 and 27

Mo [l ¢ 12 |

T. Genet (ISTIC/IRISA) ACF-2
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Exercises on function definition and function call

Exercise 1 (In Isabelle/HOL)

Use append::’a list = ’a list = ’a list to concatenate 2 lists
of nat, and 3 lists of nat.

® To associate the value of a term t to a namen...... definition "n=t"
Exercise 2 (In Isabelle/HOL)

@ Define the function addNc:: nat X nat = nat adding two naturals
® Use addNc to add 5 to 6

© Define the function add:: nat = nat = nat adding two naturals
O Use add to add 5 to 6

T. Genet (ISTIC/IRISA) ACF-2 8/34




Interlude: a word about semantics and verification
® To verify programs, formal reasoning on their semantics is crucial!
® To prove a property ¢ on a program P we need to precisely and
exactly understand P’s behavior
For many languages the semantics is given by the compiler (version)!
® C, Flash/ActionScript, JavaScript, Python, Ruby, ...

Some languages have a (written) formal semantics:
® Java ?, subsets of C (hundreds of pages)

® Proofs are hard because of semantics complexity (e.g. KeY for Java)

“http://docs.oracle.com/javase/specs/jls/se7/html/index.html

Some have a small formal semantics:
® Functional languages: Haskell, subsets of (OCaml, F# and Scala)

® Proofs are easier since semantics essentially consists of a single rule

w
T. Genet (ISTIC/IRISA) ACF-2 9/34

Constructor terms

Isabelle distinguishes between constructor and function symbols
e A function symbol is associated to a (computable) function:
® all predefined function, e.g., append
® all user defined functions, e.g., addNc and add (see Exercise 2)

® A constructor symbol is not associated to a function

Definition 5 (Constructor term)

A term containing only constructor symbols is a constructor term.
A constructor term does not contain function symbols

Example 6
® Term [0,1,2] is a constructor term;
® Term (append [0,1,2] [4,5]) is not a constructor term (because of append);

® Term 18 is a constructor term;

® Term (add 18 19) is not a constructor term (because of add).

T. Genet (ISTIC/IRISA) ACF-2 10/34

Constructor terms (II)

All data are built using constructor terms without variables

...even if the representation is generally hidden by Isabelle/HOL

Example 7
® Natural numbers of type nat are terms: 0, (Suc 0), (Suc (Suc 0)), ...

® Integer numbers of type int are couples of natural numbers:
...(0,2), (0,1), (0,0), (1,0), ... represent...—2, —1,0,1...
® Lists are built using the operators
® Nil: the empty list
® Cons: the operator adding an element to the (head) of the list

The term Cons 0 (Cons (Suc 0) Nil) represents the list [0, 1]

/\ Constructor symbols have types even if they do not “compute”

Example 8 (The type of constructor Cons)
Cons::’a = ’a list = ’a list J

T. Genet (ISTIC/IRISA) ACF-2 11/34

Constructor terms — the quiz

Quiz 2
® Nil is a term? m ‘ True H‘ . ‘ False ‘
® Nil is a constructor term? m ‘ True H‘ . ‘ False ‘
® (Cons (Suc 0) Nil) is a constructor term?

m ‘ True H‘ . ‘ False ‘
® ((Suc 0), Nil) is a constructor term? m ‘ True H‘ R ‘ False ‘
® (add 0 (Suc 0)) is a constructor term? m ‘ True H‘ R ‘ False ‘
® (Cons x Nil) is a constructor term? m ‘ True m . ‘ False ‘
® (add x y) is a constructor term? l—! ‘ True H‘ R ‘ False ‘
® (Suc 0) is a constructor subterm of (add 0 (Suc 0))?

‘ True m . ‘ False ‘
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Constructor terms: Isabelle/HOL

For most of constructor terms there exists shortcuts:

® Usual decimal representation for naturals, integers and rationals
1, 2, -3, -45.67676, ...

e [] and # for lists
e.g. Cons 0 (Cons (Suc 0) Nil) = 0#(1#]]) = [0,1]

® Strings using 2 quotes e.g. ’’toto’’ (instead of "toto")

Exercise 3
@ Prove that 3 is equivalent to its constructor representation
@® Prove that [1,1,1] is equivalent to its constructor representation
© Prove that the first element of list [1,2] is 1
@ Infer the constructor representation of rational numbers of type rat

@ Infer the constructor representation of strings

Isabelle Theory Library

Isabelle comes with a huge library of useful theories
e Numbers: Naturals, Integers, Rationals, Floats, Reals, Complex ...
® Data structures: Lists, Sets, Tuples, Records, Maps . ..
® Mathematical tools: Probabilities, Lattices, Random numbers, ...

All those theories include types, functions and lemmas/theorems

Example 9

Let’s have a look to a simple one Lists.thy:
¢ Definition of the datatype (with shortcuts)
¢ Definitions of functions (e.g. append)

¢ Definitions and proofs of lemmas (e.g. length_append)
lemma "length (xs @ ys) = length xs + length ys"

® Exportation rules for SML, Haskell, Ocaml, Scala (code printing)

13/34 10/3
Isabelle Theory Library: using functions on lists Outline
Some functions of Lists.thy
® append:: ’a list = ’a list = ’a list
® rev: ’a list = ’a list
® length:: ’a list = nat ® Terms
® List.member:: ’a list = ’a = bool o Types
® map:: (’a = ’b) = ’a list = ’b list * Typed terms
® \-terms

Exercise 4
@ Apply the rev function to list [1,2, 3]
@® Prove that for all value x, reverse of the list [x] is equal to [x]
© Prove that append is associative
@ Prove that append is not commutative
@ Prove that an element is in a reversed list if it is in the original one
O Using map, from the list [(1,2), (3, 3), (4,6)] build the list [3,6, 10]
@ Using map, from the list [1,2, 3] build the list [2, 4, 6]

® Prove that map does not change the size of a list

4
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Constructor terms

@® Functions defined using equations

® |ogic everywhere!
® Function evaluation using term rewriting
® Partial functions
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Defining functions using equations Function definition — the quiz

® Defining functions using A-terms is hardly usable for programming Quiz 3 (Is this function definition correct? m ‘ Yes H‘ . ‘ No ‘ )
e Isabelle/HOL has a "fun” operator as other functional languages fun f:: "nat = nat = bool"
where
Definition 10 (fun operator for defining (recursive) functions) " xy = (x+y)"
funfu'"m=...=>7mm=>1" <
where Quiz 4 (Is this function definition correct? [ [ [ Yes || [l | No |)
T e = 7 | foralli=1...nand k=1...m . o, In
| (tk:7) are constructor terms possibly En g:: 'mat = mnat = boo
Tt o= m” with variables, and (r*::7) are terms where
/ "g 0 y = False"

Example 11 (The contains function on lists (2 versions in cm2.thy)) Quiz 5 (Is this function definition correct? m ‘ Vs m [R] ‘ No ‘ )

fun contains:: "’a => ’a list => bool"

where fun pos:: "nat = bool"
. here

"contains e [] = False" | v

"pos 0 = False" |
"pos (Suc x) = True"

"contains e (x#xs)= (if e=x then True else (contains e xs))"l

17/34 18/34

Function definition — the quiz (II) Total and partial Isabelle/HOL functions

Definition 12 (Total and partial functions)
Quiz 6 (Is this function definition correct? m ‘ Yes H‘ . ‘ No ‘ ) A function is total if it has a value (a result) for all elements of its domain.
G peERE s asl = el A function is partial if it is not total. )
Where . -, . - . -, .
"pos2 0 = False" | Definition 13 (Complete Isabelle/HOL function definition)
"pos2 (x + 1) = True" funf:'"n=...=>m=>71"

wherel . . fis completeif any call f t; ... t, with
Quiz 7 (Is this function definition correct? | [V | Yes || | No |) iy ooty = 6 | (ti=m), i=1...nis covered by one

s ooc | case of the definition.
fun isDivisor:: "nat = nat = bool" nofpm gmoo— mon
1 ... n -
where ‘
"isDivisor x y = (3 z. x x z = y)" . . .
y y / Example 14 (Isabelle/HOL "Missing patterns” warning)
When the definition of f is not complete, an uncovered call of f is shown.
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Total and partial Isabelle/HOL functions (I1)

Theorem 15

Complete and terminating Isabelle/HOL functions are total, otherwise they
are partial.

v

Question 1
Why termination of f is necessary for f to be total?

Remark 1

All functions in Isabelle/HOL needs to be terminating!
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Outline

® Terms
® Types
® Typed terms
® \-terms
® Constructor terms

® Functions defined using equations
® |ogic everywhere!
® Function evaluation using term rewriting
® Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow's lectures
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Logic everywhere!
In the end, everything is defined using logic:
® data, data structures: constructor terms
® properties: lemmas (logical formulas)
® programs: functions (also logical formulas!)

Definition 16 (Equations (or simplification rules) defining a function) }

A function £ consists of a set f.simps of equations on terms.

To visualize a lemma/theorem/simplification rule .................... thm
For instance: thm "length append", thm "append.simps"

To find the name of a lemma, etc. ...................... find theorems
For instance: find theorems "append" "_ + _"

Exercise 5

Use Isabelle/HOL to find the following formulas:
® definition of contains (we just defined) and of nth (part of List.thy)
e find the lemma relating rev (part of List.thy) and length
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Evaluating functions by rewriting terms using equations

The append function (aliased to @) is defined by the 2 equations:

(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

(* recall that Nil=[] x*)

Replacement of equals by equals = Term rewriting

The first equation (append Nil x) = x means that
® (concatenating the empty list with any list x) is equal to x
® we can thus replace

® any term of the form (append Nil t) by t (for any value t)
® wherever and whenever we encounter such a term append Nil t

v
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Term Rewriting in three slides
® Rewriting term (append Nil (append Nil a)) using

(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))
append append —» a
DN |
Ni append —  Ni X
Ni X

® We note (append Nil (append Nil a)) — (append Nil a) if

® there exists a position in the term where the rule matches
® there exists a substitution o : X — T (F) for the rule to match.
On the example 0 = {x — a}

® We also have (append Nil a) — a

append —» append
and Ni append Ni a2l "
Ni a x
25/34

Term Rewriting in three slides — Formal definitions

Definition 17 (Substitution)

A substitution o is a function replacing variables of X by terms of
T(F,X) in a term of T(F, X).

Example 18

Let F={f:3,h:1,g:1,2:0} and X = {x,y, z}.
Let o be the substitution o = {x — g(a),y + h(z)}.
Let t = f(h(x),x, g(¥)).

We have o(t) = f(h(g(a)),g(a),g(h(z))).
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Term Rewriting in three slides — Formal definitions (I1)
Definition 19 (Rewriting using an equation)

A term s can be rewritten into the term t (denoted by s — t) using an
Isabelle/HOL equation 1=r if there exists a subterm u of s and a
substitution o such that u = o(1). Then, t is the term s where subterm u
has been replaced by o(r).

v

Example 20

Let s = f(g(a),c) and g(x) = h(g(x),b) the Isabelle/HOL equation.
h(g(a),b) ,c)
h(g(x),b)

On the opposite t = f(a, ¢) cannot be rewritten by g(x) = h(g(x),b).

we have f( g(a) ,c) — f(
because g(x) =

and 0 = {x — a}

Remark 2

Isabelle/HOL rewrites terms using equations in the order of the function
definition and only from left to right.

v
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Term rewriting — the quiz

Quiz 8
Let F={f:1,g:1,a:0} and X = {x, y}.
® Rewriting the term f(g(g(a))) with equation g(x) = x is
‘ Possible H‘ . ‘ Impossible ‘

® To rewrite the term f(g(g(a))) with g(x) = x the substitution o is
(W x> a) [ ] (x— e(a)} |

® Rewriting the term f(g(g(y))) with equation g(x) = x is
‘ Possible H‘ . ‘ Impossible ‘

® Rewriting the term f(g(g(y))) with equation g(f(x)) = x is
‘ Possible H‘ . ‘ Impossible ‘
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Isabelle evaluation = rewriting terms using equations

(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

Rewriting the term: append [1,2] [3,4] with (1) then (2) (Rmk 2)
First, recall that [1,2] = (1#(2#Nil)) and [3,4] = (3#(4#Nil))!

append (1#(2#Nil)) (3#(4#Nil)) 71) =)
(1# (append (2#Nil) (3#(4#Nil))))}

with o = {x — 1, xs — (2#Nil), y — (3#(4#Nil))}
(1# (append (2#Nil) (3#(4#Nil)))) —(2)

(1# (2#(append Nil (3#(4#Nil)))))

with o = {x — 2,xs — Nil,y — (3#(4#Nil))}

(1#(2# (append Nil (3#(4#Nil))))) — (1)
(1#(2# (3#(4#Nil)) )) = [1,2,3,4] !

with o = {x — (3#(4#Nil))}

Example 21
See demo of step by step rewriting in Isabelle/HOL! J
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Isabelle evaluation = rewriting terms using equations (II)

(1) contains e [] = False
(2) contains e (x # xs)= (if e=x then True else (contains e xs))

Evaluation of test: contains 2 [1,2,3]
—» if 2=1 then True else (contains 2 [2,3])

by equation (2), because [1,2,3] = 1#[2,3]
—» if False then True else (contains 2 [2,3])
by Isabelle equations defining equality on naturals
—» contains 2 [2,3]
by Isabelle equation (if False then x else y = y)
— if 2=2 then True else (contains 2 [3])
by equation (2), because [2,3] = 2#[3]
—» if True then True else (contains 2 [3])
by Isabelle equations defining equality on naturals
— True
by Isabelle equation (if True then x else y = x)
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Lemma simplification= Rewriting 4+ Logical deduction

(1) contains e [] = False
(2) contains e (x # xs)= (if e=x then True else (contains e xs))

Proving the lemma: contains y [z,y,v]

—» if y=z then True else (contains y [y,v])
by equation (2), because [z,y,v] = z#[y,v]

—» if y=z then True else (if y=y then True else (contains y [v]))
by equation (2), because [y,v] = y#[v]

—» if y=z then True else (if True then True else (contains y [v]))
because y=y is trivially True

— if y=z then True else True
by Isabelle equation (if True then x else y = x)

— True
by logical deduction (if b then True else True)+—True
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Lemma simplification= Rewriting + Logical deduction (I1)

False
(if e=x then True else (contains e xs))

(1) contains e []
(2) contains e (x # xs)

1]
»

(3) append [] x
(4) append (x # xs) y

1]
»

# (append xs y)

Exercise 6

Is it possible to prove the lemma contains u (append [ul v) by
simplification /rewriting?

Exercise 7

Is it possible to prove the lemma contains v (append u [v]) by
simplification /rewriting?

Demo of rewriting in Isabelle/HOL!

T. Genet (ISTIC/IRISA) ACF-2 32/34




Evaluation of partial functions

Evaluation of partial functions using rewriting by equational definitions
may not result in a constructor term

Exercise 8

Let index be the function defined by:
fun index:: "’a => ’a list => nat"
where

"index y (x#xs) = (if x=y then 0 else 1+(index y xs))"

e Define the function in Isabelle/HOL
® What does it computes?

e Why is index a partial function? (What does Isabelle/HOL says?)

® For index, give an example of a call whose result is:
® 3 constructor term
® a2 match failure

® Define the property relating functions index and List.nth
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Scala export + Demo

To export functions to Haskell, SML, Ocaml, Scala
For instance, to export the contains and index functions to Scala:

export_code contains index in Scala

test.scala

........ export_code

object cm2 {
def contains[A
(e, x1) match {
case (e, Nil) => false
case (e, x :: xs) => (if (HOL.eq[A](e, %)) true
else contains[A] (e, xs))

: HOL.equal]l (e: A, x1:

}
def index[A : HOL.equall(y: A, x1: List[A]): Nat
(y, x1) match {
case (y, x :: xs) =>
(if (HOL.eq[A](x, y)) Nat(0)
else Nat(1) + index[A](y, xs))
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Analyse et Conception Formelles

Lesson 3

Recursive Functions and Algebraic Data Types

Recursion everywhere... and nothing else

«Recursion in computer science is a method where the solution to a
problem depends on solutions to smaller instances of the same problem»

® The «bad» news: in IsabeIIe/HOL, there is no while, no for, no
mutable arrays and no pointers, ...

® The good news: you don't really need them to program!
® The second good news: programs are easier to prove without all that!

In Isabelle/HOL all complex types and functions are defined using recursion

® What theory says: expressive power of recursive-only languages and
imperative languages is equivalent

® What functional programmers say: it is as it should always be

® What other programmers say: it is tricky but you always get by

®@®
1/19 2/19
Outline Recursive Functions
® A function is recursive if it is defined using itself.
. . ® Recursion can be direct
@ Recursive functions
e Definition fun contains:: "’a => ’a list => bool"
® Termination proofs with measures where
® Difference between fun, function and primrec "contains e [] = False" |
9 (Recursive) Algebraic Data Types "contains e (X#XS) = (e=X \/ (Contains e XS))"
® Defining Algebraic Data Types using datatype
* Building objects of Algebraic Data Types e .. orindirect. In this case, functions are said to be mutually recursive.
® Matching objects of Algebraic Data Types fun even:: "nat => bool"
® Type abbreviations and odd:: "nat => bool"
Acknowledgements: Whﬁre True"
some material is borrowed from T. Nipkow and S. Blazy's lectures even 0 - orue !
"even (Suc x) = odd x" |
"odd O = False" |
"odd (Suc x) = even x"
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Terminating Recursive Functions
In Isabelle/HOL, all the recursive functions have to be terminating!

How to guarantee the termination of a recursive function? (practice)
® Needs at least one base case (non recursive case)
® Every recursive case must go towards a base case
® ... or every recursive case «decreasesy the size of one parameter

How to guarantee the termination of a recursive function? (theory)
® |f f::71 = ...= 7, = 7 then define a measure function
g1 X ... XTp =N
® Prove that the measure of all recursive calls is decreasing

To prove termination of £ f(t;) — f(t2) —
Prove that g(t1) > g(t2) >

® The ordering > is well founded on N
i.e. no infinite decreasing sequence of naturals ny > ny > ...

T. Genet (ISTIC/IRISA) ACF-3
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Terminating Recursive Functions (I1)

How to guarantee the termination of a recursive function? (theory)
® [ff::71 = ...= 7, = 7 then define a measure function
g::m X ... X7 = N
® Prove that the measure of all recursive calls is decreasing

To prove termination of £ f(t;) — f(t2) —
Prove that g(t1) > g(t2) >

Example 1 (Proving termination using a measure)

"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

@ We define the measure g = A\(x, y). (length y)

® We prove that Ve x xs. g(e, (x#xs)) > g(e, xs)
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Proving termination with measure — the quiz

Quiz 1
® Proving termination of a function f ensures that the evaluations of
(f t) will terminate for \—! ‘ some t H‘ . ‘ all possible t ‘

® For a function £::’a list = ’a list a measure function should

’a list = nat

be of type [ | a list = ’a list || [l

|

® For the function f::nat list = nat list
"t 00 =0" |
"f (x#xs) = (if x=1 then [x] else xs)"

We do not need a measure function
The only possible measure is \x. (length x)

® For function f::nat list = nat list
"t 0 =0" |
"f (x#xs)= (if x=1 then (f(x#xs)) else (f xs))"

There is no measure function
The only possible measure is \x. (length x

)

v
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Terminating Recursive Functions (III)

How to guarantee the termination of a recursive function? (Isabelle/HOL)
® Define the recursive function using fun
® Isabelle/HOL automatically tries to build a measure!
® |f no measure is found the function is rejected
® If it is not terminating, make it terminating!

® Try to modify it so that its termination is easier to show

Otherwise
® Re-define the recursive function using function (sequential)

® Manually give a measure to achieve the termination proof

! Actually, it tries to build a termination ordering but it has the same objective.
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Terminating Recursive Functions (1V)

Example 2

A definition of the contains function using function is the following:

function (sequential) contains::"’a = ’a list = bool"
where

"contains e [] = False" |

"contains e (x#xs)= (if e=x then True else (contains e xs))"

apply pat_completeness Prove that the function is "complete”
apply auto i.e. patterns cover the domain
done

Prove its termination using the measure
termination contains proposed in Example 1
apply (relation "measure (A(x,y). (length y))")

apply auto
done )
0/19

Terminating Recursive Functions (V)

Exercise 1

Define the following functions, see if they are terminating. If not, try to
modify them so that they become terminating.

fun f::"nat => nat"
where
"fox=f (x - 1)"

fun £2::"int => int"
where
"f2 x = (if x=0 then 0 else f2 (x - 1))"

fun £3::"nat => nat => nat"
where
"f3 x y= (if x >= 10 then 0 else f3 (x + 1) (y + 1))"
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Terminating Recursive Functions (VI)
Automatic termination proofs (fun definition) are generally enough

e Covers 90% of the functions commonly defined by programmers

® QOtherwise, it is generally possible to adapt a function to fit this setting
Most of the functions are terminating by construction (primitive recursive)

Definition 3 (Primitive recursive functions: primrec)

Functions whose recursive calls «peels offy exactly one constructor

Example 4 (contains can be defined using primrec instead of fun)

primrec contains:: "’a => ’a list => bool"
where
"contains e [] = False" |

"contains e (x#xs)= (if e=x then True else (contains e xs))")

For instance, in List.thy:
® 26 "fun”, 34 "primrec” with automatic termination proofs
® 3 "function” needing measures and manual termination proofs.
10/18

Recursive functions, exercises

Exercise 2
Define the following recursive functions

® A function sumList computing the sum of the elements of a list of
naturals

® A function sumNat computing the sum of the n first naturals
® A function makeList building the list of the n first naturals

State and verify a lemma relating sumList, sumNat and makeList
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Outline

@ Recursive functions
® Definition
® Termination proofs with orderings
® Termination proofs with measures
® Difference between fun, function and primrec

® (Recursive) Algebraic Data Types

Defining Algebraic Data Types using datatype
Building objects of Algebraic Data Types
Matching objects of Algebraic Data Types
Type abbreviations
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(Recursive) Algebraic Data Types

Basic types and type constructors (list, =, *) are not enough to:
® Define enumerated types
® Define unions of distinct types
® Build complex structured types

Like all functional languages, Isabelle/HOL solves those three problems
using one type construction: Algebraic Data Types (sum-types in OCaml)

Definition 5 (Isabelle/HOL Algebraic Data Type)

To define type 7 parameterized by types (au, ..., ap):
datatype (a1,...,an)7 = G Ti1...7Tin with G,...,C,
| ... capitalized identifiers
| CkTik---Tin,

Example 6 (The type of (polymorphic) lists, defined using datatype)

datatype ’a list = Nil (* Nil and Cons are capitalized *)
| Cons ’a "’a list"

v
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Building objects of Algebraic Data Types

Any definition of the form

datatype (Oél, . ,a,,)r = G T Tlm
| Cle,k---Tl,nk
also defines constructors Cy, ..., Cy for objects of type (a1, ..., an)T
The type of constructor Cjis 71 = ... = Tin = (01,...,0n)T
Example 7

datatype ’a list = Nil

| Cons ’a "’a list" defines constructors

Nil::’a list and
Hence,

® Cons (3::nat) (Comns 4 Nil)
® Cons (3::nat)

Cons::’a = ’a list = ’a list

is an object of type  nat list

is an object of type nat list = nat list
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Matching objects of Algebraic Data Types

Objects of Algebraic Data Types can be matched using case expressions:
(case 1 of Nil => ... | (Cons x r) => ...)

possibly with wildcards, i.e.

(case i of 0 => ... | (Suc ) => ...)

and nested patterns

)

(case 1 of (Cons O Nil) => ... | (Cons (Suc x) Nil) => ..
possibly embedded in a function definition
fun first::"’a list =>’a list" fun first::"’a list =>’a list"

where where
"first Nil = Nil" | "first [1 = [O" |
"first (Cons x _) = (Cons x Nil)" "first (x#_) = [x]"

T. Genet (ISTIC/IRISA) ACF-3 16/1
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Building objects of Algebraic Data Types — the quiz

Quiz 2 (we define datatype abstInt= Any | Mint int )
® How to build an object of type abstInt from integer 137
(V]3] ]| Mint 13) |
® How to build the object Any of type abstInt?

m ‘ Any H‘ . ‘ (Mint Any) ‘

® To check if a variable x: :abstInt contains an integer how to do?
(case x of (Mint ) => True | Any => False)

x= (Mint )

® |et f be defined by

f::abstInt = abstInt = abstlnt
"f (Mint x) (Mint y) = (Mint x+y)" |
Ilf — Anyll

(f (Mint 1) (Mint 2)) | (f Any (Mint 2))

What is the value of: Any Any
Mint 3 Undefined
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Algebraic Data Types, exercises

Exercise 3
Define the following types and build an object of each type using value

® The enumerated type color with possible values: black, white and
grey

® The type token union of types string and int

® The type of (polymorphic) binary trees whose elements are of type ’a

Define the following functions
® A function notBlack that answers true if a color object is not black

® A function sumToken that gives the sum of two integer tokens and 0
otherwise

® A function merge: :color tree = color that merges all colors in
a color tree (leaf is supposed to be black)
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Type abbreviations

In Isabelle/HOL, it is possible to define abbreviations for complex types
To introduce a type abbreviation ........................ type_synonym

For instance:
® type_synonym name="(string * string)"

® type_synonym (’a,’b) pair="(’a * ’b)"

Using those abbreviations, objects can be explicitly typed:
® value "(’’Leonard’’,’’Michalon’’)::name"
® value "(1,’’toto’’)::(nat,string)pair"

... though the type synonym name is ignored in Isabelle/HOL output ®
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Analyse et Conception Formelles

Lesson 4

Proofs with a proof assistant

®©®
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Prove logic formulas ... to prove programs

fun nth:: "nat => ’a list => ’a"
where

"nth 0 (x#_)=x" |

"nth x (y#ys)= (nth (x - 1) ys)"

fun index:: "’a => ’a list => nat"
where

"index x (y#ys)= (if x=y then 1 else 1+(index x ys))"

lemma nth_index: "nth (index e 1) 1= e"

How to prove the lemma nth index? (Recall that everything is logic!)

What we are going to prove is thus a formula of the form:

Theory of Equations Equations )
. VAN AN . — nth_index
lists for nth for index
221

Outline

® Finding counterexamples
® nitpick
® quickcheck

® Proving true formulas
® Proof by cases: apply (case_tac x)
Proof by induction: apply (induct x)
Combination of decision procedures: apply auto and apply simp
Solving theorems in the Cloud: sledgehammer

Acknowledgements: some material is borrowed from T. Nipkow's lectures
and from Concrete Semantics by Nipkow and Klein, Springer Verlag, 2016.

More details (in french) about those proof techniques can be found in:
® http://people.irisa.fr/Thomas.Genet/ACF/TPs/pc.thy

® CM4 video and “Principes de preuve avancés” video
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Finding counterexamples

Why?  because «90% of the theorems we write are false!»
® Because this is not what we want to prove!
® Because the formula is imprecise
® Because the function is false

® Because there are typos...

Before starting a proof, always first search for a counterexample!

Isabelle/HOL offers two counterexample finders:
® nitpick: uses finite model enumeration

+ Works on any logic formula, any type and any function
- Rapidly exhausted on large programs and properties

® quickcheck: uses random testing, exhaustive testing and narrowing
- Does not covers all formula and all types
+ Scales well even on large programs and complex properties
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Nitpick

To build an interpretation / such that [ £ ¢ (or [ = —¢) ....... nitpick

nitpick principle: build an interpretation / = —¢ on a finite domain D
® Choose a cardinality k
® Enumerate all possible domains D, of size k for all types 7 in —¢
® Build all possible interpretations of functions in —=¢ on all D;

® Check if one interpretation satisfy —¢ (this is a counterexample for ¢)

If not, there is no counterexample on a domain of size k for ¢

nitpick algorithm:
® Search for a counterexample to ¢ with cardinalities 1 upto n
® Stops when [ such that /| = —¢ is found (counterex. to ¢), or
® Stops when maximal cardinality n is reached (10 by default), or
® Stops after 30 seconds (default timeout)

Nitpick (I1)
Exercise 1

By hand, iteratively check if there is a counterexample of cardinality 1,2, 3
for the formula ¢, where ¢ is‘ length la <= 1|

Remark 1
® The types occurring in ¢ are >a and ’a list
® One possible domain D:, of cardinality 1: {a;}

® One possible domain D, ji; of cardinality 1: {[]} e
Domains have to be subterm-closed, thus {[a1]} is not valid

® One possible domain D, of cardinality 2: {a, a2}
® Two possible domains D, it of cardinality 2: {[],[a1]} and {[],[a2]}

® One possible domain D, of cardinality 3: {a1, a2, as}

® Twelve possible domains D:, js; of cardinality 3: {[], [a1], [a1, a1]},

{1 [au], (2]}, {[): [an], [a3, ]}, .. {Hferddesseay  (Demol)

/27 o/
Nitpick (I1I) Quickcheck

nitpick options:
® timeout=t, set the timeout to t seconds (timeout=none possible)
® show_all, displays the domains and interpretations for the counterex.

® expect=s, specifies the expected outcome where s can be none (no
counterexample) or genuine (a counterexample exists)

® card=i-j, specifies the cardinalities to explore
For instance:

nitpick [timeout=120, show_all, card=3-5]

Exercise 2
® Explain the counterexample found for rev 1 = 1
® |s there a counterexample to the lemma nth_index?
® Correct the lemma and definitions of index and nth

® s the lemma append_commut true? really?
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To build an interpretation / such that / = ¢ (or | = —¢) ....quickcheck
quickcheck principle: test ¢ with automatically generated values of size k
Either with a generator

® Random: values are generated randomly (Haskell's QuickCheck)

® Exhaustive: (almost) all values of size k are generated (TP4bis)

® Narrowing: like exhaustive but taking advantage of symbolic values

No exhautiveness guarantee!! with any of them

quickcheck algorithm:

Export Haskell code for functions and lemmas

Generate test values of size 1 upto n and, test ¢ using Haskell code

Stops when a counterexample is found, or

Stops when max. size of test values has been reached (default 5), or

Stops after 30 seconds (default timeout)
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Quickcheck (I1)

quickcheck options:
® timeout=t, set the timeout to t seconds

® expect=s, specifies the expected outcome where s can be
no_counterexample, counterexample or no_expectation

® tester=tool, specifies generator to use where tool can be random,
exhaustive or narrowing

® size=i, specifies the maximal size of testing values
For instance: quickcheck [tester=narrowing,size=6]
Exercise 3 (Using quickcheck)

® find a counterexample on TPO (solTPO.thy, CM4_TPO)

® find a counterexample for length_slice

Remark 2

Quickcheck first generates values and then does the tests. As a result, it
may not run the tests if you choose bad values for size and timeout.
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Counter-example finders — the quiz
Quiz 1 (On (N)itpick and (Q)uickcheck counter-example finders)

® If Q/N finds a counter-example on ¢ H Z /.s co:tra;l'g:tory
is not vali

¢ is valid
We do not know anything

e |f Q/N do not find a cex on ¢ F=

e Which of Q/N is the most powerful? H 3

Quiz 2 (If Isabelle/HOL accepts lemma ¢ closed by done)
o Then ¢ is valid .
¢ is satisfiable

® There may remain some counter-example F=

True

False

T. Genet (ISTIC/IRISA) ACF-4
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What to do next?

When no counterexample is found what can we do?

® Increase the timeout and size values for nitpick and quickcheck?
e .. go for a proof!

Any proof is faster than an infinite time nitpick or quickcheck

Any proof is more reliable than an infinite time nitpick or quickcheck

(They make approximations or assumptions on infinite types)

The five proof tools that we will focus on:
® apply case_tac
® apply induct
©® apply auto
@O apply simp
© sledgehammer
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How do proofs look like?
A formula of the form A; A ... A A, is represented by the proof goal:

goal (n subgoals):
1. A
n. A,

Where each subgoal to prove is either a formula of the form
AXxi...xp. B meaning prove B, or
Ax1...xp. B= C meaning prove B — C, or

AXx1...Xp. B = ... B,= C meaning prove BiA...ANB, — C

and A xj ...x, means that those variables are local to this subgoal.

Example 1 (Proof goal)

goal (2 subgoals):
1. contains e [] = nth (index e []) []1 = e
2. Nal. e # a =—> contains e (a # 1) —
— contains e 1 —> nth (index e 1) 1 = e
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Proof by cases
... possible when the proof can be split into a finite number of cases

Proof by cases on a formula F

Do a proof by cases on a formula F ............. apply (case_tac "F")
Splits the current goal in two: one with assumption F and one with = F

v

Example 2 (Proof by case on a formula)
With apply (case_tac "F::bool")
goal (2 subgoals):
becomes 1. F = A — B
2. - F— A — B

goal (1 subgoal):
1. A— B

Exercise 4
Prove that for any natural number x, if x < 4 then x * x < 10.

T. Genet (ISTIC/IRISA) ACF-4 13 /27

Proof by cases (II)

Proof by cases on a variable x of an enumerated type of size n

Do a proof by cases on a variable x ............. apply (case_tac "x")
Splits the current goal into n goals, one for each case of x.

Example 3 (Proof by case on a variable of an enumerated type)

In Course 3, we defined datatype color= Black | White | Grey

With apply (case tac "x")
goal (3 subgoals):

goal (1 subgoal): . x = Black = P x
becomes .

1. P (x::color) 2. x = White — P x

3. x = Grey — P x

Exercise 5

On the color enumerated type or course 3, show that for all color x if the
notBlack x is true then x is either white or grey.

V.
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Proof by induction

«Properties on recursive functions need proofs by inductiony»

Recall the basic induction principle on naturals:

|P(0) AVx €N (P(x) — P(x+1)) — ¥Yx N P(x)]

All recursive datatype have a similar induction principle, e.g. ’a lists:

P([]) AVe € a. VI € >a list.(P(l) — P(e#l)) — VI € ’a list.P(/)

Etc...

Example 4

datatype ’a binTree= Leaf | Node ’a "’a binTree" "’a binTree"

P(Leaf) AVe € ’a. Vt1 t2 € >a binTree.
(P(t1) A P(t2) — P(Node e t1t2)) — VYt € ’a binTree.P(t)
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Proof by induction (1)

P([)AVe € ’a. VI € >a 1list.(P(l) — P(e#l)) — VI € ’a list.P(l)

Example 5 (Proof by induction on lists)
Recall the definition of the function append:

(1) append [] 1
(2) append (x#xs) 1

1
x# (append xs 1)

To prove ‘Vl € ’a list. (append /[ ]) = /‘ by induction on /, we prove:

® append [|[] =], proven by the first equation of append
® Vec ’a. Ve ’a list.

(append [[1) = I —> (append (e#/) [ 1) = (e#])
using the second equation of append, it becomes

(append I[]) =1 — eft(append I []) = (e#!)
using the (induction) hypothesis, it becomes

(append I[]) =1 — el = (e#l)
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Proof by induction: apply (induct x)
To apply induction principle on variable x ........... apply (induct x)

Conditions on the variable chosen for induction (induction variable):
® The variable x has to be of an inductive type (nat, datatypes, ...)
Otherwise apply (induct x) fails
® The terms built by induction cases should easily be reducible!

Example 6 (Choice of the induction variable)

(1) append [ 1 1 1
(2) append (x#xs) 1 x# (append xs 1)

To prove ‘V/l h € ’a list. (length (append h k)) > (length l2)‘

An induction proof on Iy, instead of /, is more likely to succeed:

® an induction on /; will require to prove:
(length (append (e#1) k) > (length k)
® an induction on / will require to prove:

(length (append I (e#1h)) > (length (e#h))
17/27

Proof by induction: apply (induct x) (II)

Exercise 6

Recall the datatype of binary trees we defined in lecture 3. Define and
prove the following properties:

@ /f contains x t, then there is at least one node in the tree t.

@ Relate the fact that x is a sub-tree of y and their number of nodes.

4

Exercise 7

Recall the functions sumList, sumNat and makeList of lecture 3. Try to
state and prove the following properties:

@ Relate the length of list produced by makeList i and i
® Relate the value of sumNat i and i

© Give and try to prove the property relating those three functions
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Proof by induction: generalize the goals
By defaut apply induct may produce too weak induction hypothesis

Example 7

When doing an apply (induct x) on the goal P (x::nat) (y::nat)

goal (2 subgoals):
1. POy
2. Ax. Pxy = P (Suc x) y

In the subgoals, y is
fixed /constant!

Example 8
With apply (induct x arbitrary:y) on the same goal

goal (2 subgoals):

1. Ay.- POy
2. Ax y. Pxy = P (Suc x) y

The subgoals range over
any y

Exercise 8

Prove the sym lemma on the leq function.
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Proof by induction: : induction principles
Recall the basic induction principle on naturals:

|P(O) AVx €N (P(x) — P(x+1)) — VYx €N P(x)|

In fact, there are infinitely many other induction principles

® POAPAVXEN. ((x>0AP(x)) — P(x+1) — VxeN.P(x)

® Strong induction on naturals
Vx,y e N.((y < x A P(y)) — P(x)) — VxeN.P(x)

® Well-founded induction on any type having a well-founded order <<
Vx,y. ((y << xAP(y)) — P(x)) — Vx.P(x)
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Proof by induction: : induction principles (I1)

Apply an induction principle adapted to the function call (£ x y z)
.............................. apply (induct x y z rule:f.induct)

Apply strong induction on variable x of type nat

........................... apply (induct x rule:nat_less_induct)
Apply well-founded induction on a variable x

.................................. apply (induct x rule:wf_induct)

Exercise 9
Prove the lemma on function divBy?2. J
/2

Combination of decision procedures auto and simp
Automatically solve or simplify all subgoals ........... apply auto

apply auto does the following:
® Rewrites using equations (function definitions, etc)

® Applies a bit of arithmetic, logic reasoning and set reasoning

On all subgoals

Solves them all or stops when stuck and shows the remaining subgoals

Automatically simplify the first subgoal .............. apply simp
apply simp does the following:

® Rewrites using equations (function definitions, etc)
® Applies a bit of arithmetic
® on the first subgoal

® Solves it or stops when stuck and shows the simplified subgoal
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Combination of decision procedures auto and simp (I1)

Want to know what those tactics do?
® Add the command using [[simp_trace=true]] in the proof script
® | ook in the output buffer

Example 9

Switch on tracing and try to prove the lemma:

lemma "(index (1::nat) [3,4,1,3]) = 2"
using [[simp_trace=true]]

apply auto
”
221

Sledgehammer

«Sledgehammers are often used in destruction work...»
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Sledgehammer
«Solve theorems in the Cloud»

Architecture:

Formula to prove
+ relevant definitions and lemmas

Isabelle/HOL External ATPs!
% Local or in the Cloud
Proof (click on it)
Prove the first subgoal using state-of-the-art> ATPs ...... sledgehammer

e Call to local or distant ATPs: SPASS, E, Vampire, CVC4, Z3, etc.
® Succeeds or stops on timeout (can be extended, e.g. [timeout=120])
® Provers can be explicitely selected (e.g. [provers= z3 spass]

® A proof consists of applications of lemmas or definition using the
Isabelle/HOL tactics: metis, smt, simp, fast, etc.

! Automatic Theorem Provers
2See http://www.tptp.org/CASC/.
2521

Sledgehammer (1)
Remark 3

By default, sledgehammer does not use all available provers. But, you can
remedy this by defining, once for all, the set of provers to be used:

sledgehammer_params [provers=cvc4 spass z3 e vampire]

Exercise 10
Finish the proof of the property relating nth and index

Exercise 11

Recall the functions sumList, sumNat and makeList of lecture 3. Try to
state and prove the following properties:

@ Prove that there is no repeated occurrence of elements in the list
produced by makeList

@® Finish the proof of the property relating those three functions

T. Genet (ISTIC/IRISA) ACF-4 26 /27

Hints for building proofs in Isabelle/HOL

When stuck in the proof of prop1, add relevant intermediate lemmas:
@ In the file, define a lemma before the property propl
® Name the lemma (say leml) (to be used by sledgehammer)
© Try to find a counterexample to leml
® If no counterexample is found, close the proof of leml by sorry
©® Go back to the proof of propl and check that 1eml helps

@ If it helps then prove leml. If not try to guess another lemma

To build correct theories, do not confuse oops and sorry:

® Always close an unprovable property by oops

® Always close an unfinished proof of a provable property by sorry

Example 10 (Everything is provable using contradictory lemmas) J

We can prove that 1 + 1 = 0 using a false lemma.
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Scala in a nutshell Outline

® “Scalable language”: small scripts to architecture of systems

Designed by Martin Odersky at EPFL
® Programming language expert

® One of the designers of the Java compiler

Pure object model: only objects and method calls (# Java)

Fully interoperable with Java (in both directions)
e Concise smart syntax (# Java)

® A compiler and a read-eval-print loop integrated into the IDE

Scala worksheets!!
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With functional programming: higher-order, pattern-matching, ...

3/39

0 Basics

@ Base types and type inference
@ Control : if and match - case
@ Loops (for) and structures: Lists, Tuples, Maps

9 Functions
@ Basic functions
@ Anonymous, Higher order functions and Partial application

© Object Model
@ Class definition and constructors
@ Method/operator/function definition, overriding and implicit defs
@ Traits and polymorphism
@ Singleton Objects
@ Case classes and pattern-matching

e Interactions with Java
@ Interoperability between Java and Scala

e Isabelle/HOL export in Scala

T. Genet (ISTIC/IRISA) ACF-5

4/39




Outline
o Basics

@ Base types and type inference
@ Control : if and match - case
@ Loops (for) and structures: Lists, Tuples, Maps
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Base types and type annotations

® 1:Int, "toto":String, ’a’:Char, ():Unit
® Every data is an object, including base types!

e.g. 1 is an object and Int is its class

® Every access/operation on an object is a method call!
e.g 1 + 2 executes: 1.+(2) (o.x(y) is equivalent to o x )

Exercise 1

Use the max (Int) method of class Int to compute the maximum of 1+2
and 4.

T. Genet (ISTIC/IRISA) ACF-5 6/39

Class hierarchy

saala
AnyVal
FAAANRR W

scala
Boolean

S ...(other Scala classes) ...
Short

1
\
S scala

Byte

scals
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Subtyping and class hierarchy — the quiz

Quiz 1
® 12 is of type Int. l—! ‘ True H‘ . ‘ False ‘
® Int is a subtype of Any. m ‘ True H‘ . ‘ False ‘
© 12 is of type Any. m ‘ True H‘ . ‘ False ‘
O Int is a subtype of Double. m ‘ True H‘ . ‘ False ‘
® 12 of type Double. m ‘ True H‘ . ‘ False ‘
@ null of type List. m ‘ True H‘ . ‘ False ‘
@ 12 of type Nothing. m ‘ True H‘ . ‘ False ‘
® "toto" of type Any. \—! ‘ True H‘ . ‘ False ‘
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val and var

® val associates an object to an identifier and cannot be reassigned
® var associates an object to an identifier and can be reassigned

® Scala philosophy is to use val instead of var whenever possible
® Types are (generally) automatically inferred

scala> val x=1 // or val x:Int = 1

x: Int = 1

scala> x=2
<console>:8: error: reassignment to val
x=2

scala> var y=1

y: Int =1
scala> y=2
y: Int = 2
13/39

if expressions

® Syntax is similar to Java if statements ...
but that they are not statements but typed expressions

e if ( condition ) el else e2

Remark: the type of this expression is the supertype of el and €2

e if ( condition ) el // else ()

Remark: the type of this expression is the supertype of el and Unit

Quiz 2 (What is the smallest type for the following expressions)
® if (1==2) 1 else 2 [ ] 1ot [N | Any |
@ if (1==2) 1 else "toto" EE1 I3
© if (1==2) 1 m ‘ AnyVal H‘ R ‘ Int ‘
O if (1==1) println(1) m ‘ Any H‘ . ‘ Unit ‘
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match - case expressions

® Replaces (and extends) the usual switch - case construction
® The syntax is the following:

e match {
case patternl =>ril
case pattern2 => r2

//patterns can be constants
//or terms with variables
//or terms with holes: ’_’
case _ => rn

}

® Remark: the type of this expression is the supertype of r1, r2, ...rn
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Match-case — the quiz

Quiz 3 (What is the value of the following expression?)

val x= "bonjour"

x match {
case "au revoir" => "goodbye" "hello"
case _ => "don’t know" "don’t know"

case "bonjour" => "hello"

Quiz 4 (What is the value of the following expression?)

val x= "bonj"

x match { :
case "au revoir" => "goodbye" Undetined
case "bonjour" => "hello" "hello"

}
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(Immutable) Lists: List [A]

e List definition (with type inference)
val 1= List(1,2,3,4,5)

® Adding an element to the head of a list
val 11= 0::1

® Adding an element to the queue of a list
val 12= 11:+6

e Concatenating lists
val 13= 11++12

® Getting the element at a given position

Immutable lists — the quiz

Quiz 5 (Is this program valid?)

T st (raeron, tun, o) | T ves T I [ Mo

Quiz 6 (Is this program valid?)

yar i LaerCaerer, tunt, Mews") | ST Ves [ M | Mo

val x= 12(2) - - -
Quiz 7 (Is this program valid?)
® Doing pattern-matching over lists ( ;
val 1li= List(1l,"toto",2
12 match i ’
match { val 12= 1i ++ List(3,4) || ves [ | ~o |
case Nil => 0
case e::_ => e
}
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Immutable lists — the quiz for loops
Quiz 8 (Is this program valid?)
var 1li= List(1,2,3) ® for (ident<-s) e
li= 1i ++ List(5,6) \—! ‘ Yes H\ . ‘ No ‘ Remark: s has to be a subtype of Traversable
v (Arrays, Collections, Tables, Lists, Sets, Ranges, ...)
Quiz 9 (What is the result printed by this program?) e Usual for-loops can be built using .to(. ..)
val ti= Array(4,5,6) "(1).to(B)" = "1 to 5" results in Range(1, 2, 3, 4, 5)
val t2= ti 4 5
t2(1)= -4 - Exercise 2
println(t1(1)) Given val 1b=List(1,2,3,4,5) and using for, build the list of squares
< of 1b.
Quiz 10 (What is the result printed by this program?)
var li= List(1,2,3) Exercise 3
var 12= 1i Using for and println build a usual 10 x 10 multiplication table.
12= 12. updated(1, 10) (W0 W]
println(1i(1))
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(Immutable) Tuples : (A,B,C,...)

® Tuple definition (with type inference)
scala> val t= (1,"toto",18.3)
t: (Int, String, Double) = (1,toto,18.3)

® Tuple getters: t._ 1, t._2, etc.

® . or with match - case:

t match { case (2,"toto",.) => "found!"
case (_,x, ) =>x
}

The above expression evaluates in "toto"

(Immutable) maps : Map[A,B]

® Map definition (with type inference)
val m= Map(’C’ -> "Carbon",’H’ -> "Hydrogen")
Remark: inferred type of m is Map [Char,String]

® Finding the element associated to a key in a map, with default value
m.getOrElse(’K’, "Unknown")

® Adding an association in a map
val mi= m+(’°0° -> "Oxygen")

® A Map[A,B] can be traversed (using for) as a Collection of pairs
of type Tuple[A,B], e.g. for((k,v) <- m){ ... }

Exercise 4
Print all the keys of map m1 J
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Outline Basic functions
e def f (argl: Typel, ..., argn:Typen ): Typef= {e}
Remark 1: type of e (the type of the last expression of €) is Typef
Remark 2: Typef can be inferred for non recursive functions
@ Functions Remark 3: The type of fis: (Typel,... Typen) Typef

@ Basic functions
@ Anonymous, Higher order functions and Partial application
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Example 1

def plus(x:Int,y:Int):Int={
println("Sum of "+x+" and "+y+" is equal to "+(x+y))
x+y // no return keyword

} // the result of the function is the last expression
v

Exercise 5

Using a map, define a phone book and the functions

addName (name:String,tel:String), getTel (name:String) :String,
getUserList:List [String] and getTellList:List [String].
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Anonymous functions and Higher-order functions

® The anonymous Scala function adding one to x is:
((x:Int) => x + 1)
Remark: it is written (A x.x + 1) in Isabelle/HOL

® A higher order function takes a function as a parameter
e.g. method/function map called on a List[A] takes a function
(A =>B) and results in a List[B]

scala> val 1=List(1,2,3)
1: List[Int] = List(1, 2, 3)

scala> l.map ((x:Int) => x+1)
resl: List[Int] = List(2, 3, 4)

Exercise 6

Using map and the capitalize method of the class String, define the
capUserList function returning the list of capitalized user names.

Partial application

® The "' symbol permits to partially apply a function
e.g. getTel (L) returns the function associated to getTel

Example 2 (Other examples of partial application)

(_:String) .size (_:Int) + (_:Int) (_:String) == "toto"

Exercise 7

Using map and partial application on capitalize, redefine the function
capUserList.

Exercise 8

Using the higher order function filter on Lists, define a function
above(n:String) :List (String) returning the list of users having a
capitalized name greater to name n.
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Outline Class definition and constructors
® class C(vl: typel, ..., vnitypen) { ... }
the primary constructor
e.g. class Rational(n:Int,d:Int){
val num=n // can use var instead
val den=d // to have mutable objects
def isNull() :Boolean=(this.num==0)
e Object Model ) ) )
@ Class definition and constructors ® Objects instances can be created using new:
@ Method/operator/function definition, overriding and implicit defs val ril= new Rational(3,2)
@ Traits and polymorphism ® Fields and methods of an object can be accessed via “dot notation”
@ Singleton Objects _ if (r1.isNull()) println("rational is null")
© Case classes and pattern-matching val double_rl= new Rational(rl.num*2,rl.den)
Exercise 9
Complete the Rational class with an add(r:Rational) :Rational
function.
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Overriding, operator definitions and implicit conversions

® Overriding is explicit: override def f(...)

Exercise 10
Redefine the toString method of the Rational class. J
e All operators '+', '*', '==", '>", ... can be used as function names

e.g. def +(x:Int):Int= ...

Remark: when using the operator recall that x.+(y) =x + y
Exercise 11
Define the '+ and '*’ operators for the class Rational. J

® |t is possible to define implicit (automatic) conversions between types
e.g. implicit def bool2int(b:Boolean):Int= if b 1 else 0

Exercise 12
Add an implicit conversion from Int to Rational. J
2/3

Traits

® Traits stands for interfaces (as in Java)

trait IntQueue {
def get:Int
def put(x:Int):Unit

}

® The keyword extends defines trait implementation

class MyIntQueue extends IntQueue{
private var b= List[Int] ()
def get= {val h=b(0); b=b.drop(1); h}
def put(x:Int)= {b=b:+x}
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Singleton objects

® Singleton objects are defined using the keyword object
trait IntQueue {
def get:Int
def put(x:Int):Unit

}

object InfiniteQueueOfOne extends IntQueue{
def get=1
def put(x:Int)={}

® A singleton object does not need to be “created” by new
InfiniteQueueOfOne.put (10)
InfiniteQueue0fOne.put(15)

val x=InfiniteQueueOfOne.get
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Type abstraction and Polymorphism
Parameterized function/class/trait can be defined using type parameters
trait Queue[T]{

def get:T
def push(x:T):Unit

// more generic than IntQueue

}

class MyQueue[T] extends Queue[T]{
protected var b= List[T] ()

def get={val h=b(0); b=b.drop(1); h}
def put(x:T)= {b=b:+x}

}

def first[T1,T2] (pair:(T1,T2)):T1=
pair match case (x,y) => x
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Case classes

® (Case classes provide a natural way to encode Algebraic Data Types
e.g. binary expressions built over rationals: % + —(%)

trait Expr

case class BinExpr(o:String,l:Expr,r:Expr) extends Expr

case class Constant(r:Rational) extends Expr
case class Inv(e:Expr) extends Expr

® |nstances of case classes are built without new
e.g. the object corresponding to 2 + —(3) is built using:
BinExpr("+",Constant (new Rational(18,27)),
Inv(Constant (new Rational(1,2))))

Case classes and pattern-matching

trait Expr

case class BinExpr(o:String,l:Expr,r:Expr) extends Expr
case class Constant(r:Rational) extends Expr

case class Inv(e:Expr) extends Expr

® match case can directly inspect objects built with case classes
def getOperator(e:Expr):String= {

e match {
case BinExpr(o,_,_) => o
case _ => "No operator"

}

Exercise 13

Define an eval (e:Expr) :Rational function computing the value of any
expression.
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Outline Interoperablity between Java and Scala
® |n Scala, it is possible to build objects from Java classes
e.g. val txt:JTextArea=new JTextArea("")
® And to define scala classes/objects implementing Java interfaces
e.g. object Window extends JFrame
® There exists conversions between Java and Scala data structures
import scala.collection.JavaConverters._
val 11:java.util.List[Int]= new java.util.ArrayList[Int] ()
11.add(1); 11.add(2); 11.add(3) // 11: java.util.List[Int]
val sbl= 1l1l.asScala.tolList // sl1: List[Int]
. . val slil= sbl.asJava // sl1l: java.util.List[Int]
e Interactions with Java }
@ Interoperability between Java and Scala
® Remark: it is also possible to use Scala classes and Object into Java
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Outline

© Isabelle/HOL export in Scala
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Isabelle/HOL exports Scala case classes and functions...

theory tp

[...]

datatype ’a tree= Leaf | Node "’a * ’a tree * ’a tree"
fun contains:: "’a = ’a tree = bool"

where

"contains _ Leaf = False"
"contains x (Node(y,l,r)) = (if x=y then True else ((contains x 1)
V (contains x r)))"

to Scala

object tp {
abstract sealed class tree[+A] // similar to traits
case object Leaf extends tree[Nothing]
case class Node[A]l (a: (A, (treel[A]l, tree[A]l))) extends tree[A]
def contains[A : HOL.equall (uu: A, x1: tree[A]): Boolean =
(uu, x1) match {
case (uu, Leaf) => false
case (x, Node((y, (1, r)))) => (if (HOL.eq[A]l(x, y)) true
else contains[A]l(x, 1) || contains[A](x, 1))
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. and some more cryptic code for Isabelle/HOL equality

object HOL {
trait equallA] {
val ‘HOL.equal‘: (A, A) => Boolean
}

def equall[A]l(a: A, b: A)(implicit A: equal[A]): Boolean =
A.‘HOL.equal‘(a, b)
def eq[A : equall(a: A, b: A): Boolean = equal[A](a, b)

}

To link Isabelle/HOL code and Scala code, it can be necessary to add:

implicit def equal_t[T]: HOL.equal[T] = new HOL.equall[T] {
val ‘HOL.equal‘ = (a: T, b: T) => a==
}

Which defines HOL.equal[T] for all types T as the Scala equality ==
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Analyse et Conception Formelles

Lesson 6

Certified Programming

®©®

T. Genet (ISTIC/IRISA) ACF-6 1/23

Outline

@ Certified program production lines
® Some examples of certified code production lines
What are the weak links?
How to certify a compiler?
How to certify a static analyzer of code?
How to guarantee the correctness of proofs?

® Methodology for formally defining programs and properties
® Simple programs have simple proofs
® Generalize properties when possible
® Look for the smallest trusted base

T. Genet (ISTIC/IRISA) ACF-6 2/23

B code production line

Proven Ada Binan
n y
Algorithms B
) Code Program Ad code
& |— B —» |Machine |—» — —_— a ) _,
Properties CanewEier Compiler
C© Binary
Program code

The first certified code production line used in the industry

® For security critical code

Used for onboard automatic train control of metro 14 (RATP)

Several industrial users: RATP, Alstom, Siemens, Gemalto
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Scade/Astree/CompCert code production line

_ Lustre c Binary
Algorithms R'eal Code Program x86

& —> —»| Time |—>» Generator | —> — > or
Properties Prog. PPC

- Ok Frama-C
C runtime Functional
-Properties @ < -Properties —> Why —» Ok
Don't know Coq

The (next) Airbus code production line
For security critical code (e.g flight control)
Scade uses model-checking to verify programs or find counterexamples
Astree is a static analyzer of C programs proving the absence of
® division by zero, out of bound array indexing
® arithmetic overflows

® Frama-C is a proof tool for C prog. (close to Why), automated
provers like Alt-Ergo, CVC4, Z3, etc. and the Coq proof assistant
e CompCert is a certified C compiler (X. Leroy & S. Blazy, etc.)
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Isabelle to Scala line

What are the weak links of such lines?

_ Proven Scala oS
Algorithms Isabelle Cod File File
Proven Scal & —> —» | Theory G © — Scalla Java
TRETEE [ - e - = " Binary Properties fun... enerator Compiler byt
Propgrties - HE:OW T \Generator | —> >\ compiter | —> Jba;;lt: g Corr(|JDI-iI;er) g i code
lemma.. .| b
@ The initial choice of algorithms and properties
® Used for specification and verification of industrial size softwares @® The verification tools (analyzers and proof assistants)
e.g. Operating system kernel seL4 (C code) ©® Code generators/compilers
® Code generation not yet used at an industrial level
. . — we need some guaranties on each link!
® More general purpose line than previous ones
. Certification of compilers
e All proofs performed in Isabelle are checked by a trusted kernel o P
o I . . Certification of static analyzers
® Formalization/Verification of other parts is ongoing research 4 y
. Verification of proofs in proof assistant
e.g. some research efforts for certifying a JVM © P P
O Methodology for formally defining algorithms and properties
—> we need to limit the trusted base!
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How to limit the trusted base? How to limit the trusted base?
Proven Proven
Static TEeRy Static Wz
Analyzer o Analyzer fun...
lemma. .. lemma...
checks checks checks checks checks checks
Compiler SlElie Proof Compiler SlEle Proof
Verifier Analyzer : Verifier Analyzer Aot
Verifier Assistant Verifier &I
The trusted base
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How to limit the trusted base?

Proven
Static Theory
Analyzer —_—
lemma...
checks checks checks
N Y
A
Proof
Assistant

The trusted base

How to certify a compiler?

P1 P2
n in

Iangxage > » |language
B

What is the property to prove? V P1. P1 «behavesy like P2

How can we prove this?
® Need to formally describe behaviors of programs:

® Formal semantics for language A and language B
® Close to defining an interpreter (using terms and functions) (~TP4)
i.e. define evalA(prog,inputs) and evalB(prog,inputs)

® Then, prove that ¥ P1 P2 s.t. P2=compil(P1):
® Vinputs. evalA(P1,inputs) stops <— evalB(P2,inputs) stops, and
® VYinputs. evalA(P1,inputs) = evalB(P2,inputs)

® Proving this by hand is unrealistic (recall the size of Java semantics)

® Use a proof assistant... compiler is correct if the proof assistant is!
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How to certify a static analyzer (SAn)? (TP67) Static analysis — the quiz
Progpram
T Static \ _» Ok Quiz 1
Properties = Analyzer
no BAD -7 X pon't know . . Proving a property
Behavior ® What is a static analyzer good at? —
Finding bugs
What is the property to prove?
’V P. SAn(P)=True — «nothing bad happens when executing P» . . Yes
® [s a static analyzer running the program to analyze? N
How can we prove this? ©
® Again, we need to formally describe behaviors of programs: Yes
® Formal semantics of language of P, define eval (prog,inputs) ® [s a static analyzer has access to the user inputs? H N
® \We need to formalize the analyzer and what is a «bad» behavior 0
° Formalize «bady , i.e. define a BAD predicate on program results * Given a program P, eval and BAD, can we verify by computation that
® Formalize the analyser SAn for all inputs, — BAD(eval(P,inputs))? l—! ‘ Yes H‘ B ‘ No ‘
® Then, prove that the static analyzer is safe:
vV P. Vinputs. (SAn(P)= True) — — BAD(eval(P,inputs)) ® Given a program P, and SAn can we verify by computation that
e Again, proving this by hand is unrealistic SAn(P)=True? . ‘ Yes H‘ . ‘ No ‘)
® Use a proof assistant... analyzer is correct if the proof assistant is!
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How to certify a static analyzer (SAn)?

Isabelle file cm6.thy

Exercise 1
Define a static analyzer san for such programs:

san:: program = bool

(I1)

Exercise 2
Define the BAD predicate on program states:

BAD:: pgState = bool

Exercise 3

Define the correctness lemma for the static analyzer san.
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In the end, we managed to do this...

Proven
Static Theory
Analyzer _—
lemma...
checks checks checks
N Y
> N
Proof
Assistant

The trusted base
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How to guarantee correctness of proofs in

proof assistants?

\ \ // Proven

Algorithms Isabelle
& —> —» | Theory
Properties fun...

lemma.. .

How to be convinced by the proofs done by a proof assistant?

® Relies on complex algorithms
® Relies on complex logic theories

® Relies on complex decision procedures

— there may be bugs everywhere!
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Weak points of proof assistants

A proof in a proof assistant is a tree whose leaves are axioms

True Difference with a proof on paper:
610 .
[ ® Far more detailed
True True \V True .
99 08 97 96 ® A lot of axioms
\ ;True \ . ® Shortcuts: External decision
3 : L LI g procedures
\ A 2
o e T 02 : Axioms = fewer details
\({ Decision Proc. = automatization

Axioms and decision procedures are the main weaknesses of proof assistants

Choices made in Coq, Isabelle/HOL, PVS, ACL2, etc. are very different

T. Genet (ISTIC/IRISA) ACF-6 16 /23




Proof handling : differences between proof assistants

Proof checking: how is it done in Isabelle/HOL?

Isabelle/HOL have a well defined and «small » trusted base
® A kernel deduction engine (with Higher-order rewriting)
® Few axioms for each theory (see HOL.thy, HOL/Nat.thy)

’ | Coq | PVS | Isabelle [ ACL2 ‘ ® QOther properties are lemmas, i.e. demonstrated using the axioms
Axioms minimum | free minimum free . . .
and fixed and fixed All proofs are carried out using this trusted base:
Decision proofs trusted proofs trusted ® Proofs directly done in Isabelle (auto/simp/induct/...)
procedures checked | (no check) | checked (no check) ® All proofs done outside (sledgehammer) are re-interpreted in Isabelle
by Coq by Isabelle using metis or smt that construct an Isabelle proof
Proof terms built-in no additional | no |
System basic in between | in between | good Example 1
automatization Prove the lemma (x + 4) * (y +5) > x * y using sledgehammer.
Counterexample | basic basic yes yes @ Interpret the found proof using metis
generator
® Switch on tracing: add
using [[simp_trace=true,simp_trace_depth_limit=5]]
before the apply command
© Re-interpret the proof
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Outline Simple programs have simple proofs : Simple is beautiful
Example 2 (The intersection function of TP2/3)
. o An «optimized» version of intersection is harder to prove. J
@ Certified program production lines
® Some examples of certified code production lines . . . L
e What are the weak links? @ Program function f (x) as simply as possible... no optimization yet!
® How to certify a compiler? ® Use simple data structures for x and the result of £ (x)
® How to certify a static analyzer of code? ¢ Use simple computation methods in £
® How to guarantee the correctness of proofs?
® Prove all the properties 1em1, 1lem2, ... needed on f
® Methodology for formally defining programs and properties i e ) ¢
@ Simple programs have simple proofs o ( neces'sa'ry) program'fopt (x) an optimized version of £
@® Generalize properties when possible ® Optimize computation of fopt
© Look for the smallest trusted base ® Use optimized data structure if necessary
@ Prove that V x. f(x)=fopt(x)
@ Using the previous lemma, prove again lemi, lem2, ... on fopt
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Simple programs have simple proofs (II)

Exercise 4

The function fastReverse is a tail-recursive version of reverse. Prove
the classical lemmas on fastReverse using the same properties of
reverse:

e fastReverse (fastReverse 1)=1

® fastReverse (11012)= (fastReverse 12)@(fastReverse 11)

Exercise 5

Prove that the fast exponentiation function fastPower enjoys the classical
properties of exponentiation:

[ ] Xy *XZ = X(y+z)

* (xxy)* =x"xy*

[ Xyz = X(Y*Z)
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Generalize properties when possible
Exercise 6 (On List.member and intersection of TP2/3)

® Prove that ((List.member 11 e) A (List.member 12 e)) —
(List.member (intersection 11 12) e)
® How to generalize this property?

® What is the problem with the given function intersection?

Exercise 7 (On function clean of TP2/3)
® Prove that clean [x,y,x]=[y,x]
® How to generalize this property of clean?

e What is the problem with the given definition of function clean?

Exercise 8 (On functions List .member and delete of TP2/3)
® Try to prove that

List.member 1 x — List.member 1 y — x#y —
(List.member (delete y 1) x)
2/23

Limit the trusted base in your Isabelle theories
Trusted base = functions that you cannot prove and have to trust
Basic functions on which lemmas are difficult to state
To verify a function £, define lemmas using £ and:
® functions of the trusted base

® other proven functions

Example 3
In TP2/3, which functions can be a good trusted base?

Remark: There can be some interdependent functions to prove!

Example 4 (Prove a parser and a prettyPrinter on programs)
® parser:: string = prog
® prettyPrinter:: prog — string
The property to prove is: V p. parser(prettyPrinter p) = p
prettyPrinter is more likely to be trusted since it is simpler
e




Analyse et Conception Formelles

Lesson 7

Program verification methods

Outline

@ Testing

® Model-checking
© Assisted proof

O Static Analysis

@ A word about protoypes/models, accuracy, code generation

®@®
1/37 2/37
Disclaimer The basics
Definition 2 (Specification)
: A complete description of the behavior of a software.
Theorem 1 (Rice, 1953) ’
Any nontrivial property about the language recognized by a Turing Definition 3 (Oracle)
machine is undecidable. An oracle is a mechanism determining whether a test has passed or failed,
w.r.t a specification.
“The more you prove the less automation you have”
Definition 4 (Domain (of Definition))
The set of all possible inputs of a program, as defined by the specification.
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Notations

Spec
Mod
Source
EXE

D

Oracle
D#
Source™
Oracle?”

the specification

a formal model or formal prototype of the software
the source code of the software

the binary executable code of the software

the domain of definition of the software

an oracle

an abstract definition domain
an abstract source code

an abstract oracle
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Testing principles

Spec

-

EXE|[—%oracle

3]

%zz
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Testing principles (random generators)

Spec

Test

Random

Generator

EXE|7—>%oracle

—3

This is what Isabelle/HOL quickcheck does (and TP4Bis)
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Testing principles (white box testlng

Spec
Random
Test
Generator
EXE Y oracle
Source . :
3

Definition 5 (Code coverage)

The degree to which the source code of a program has been tested, e.g. a
statement coverage of 70% means that 70% of all the statements of the
software have been tested at least once.
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Demo of white box testing in Evosuite

Objective: cover 100% of code (and raised exceptions)

Example 6 (Program to test with Evosuite)

public static int Puzzle(int[] v, int i){
if (v[il>1) {
if (v[i+2]==v[il+v[i+1]) {
if (v[i+3]==v[i]+18)
throw new Error("hidden bug!");
else return 1;}
else return 2;}
else return 3;

}
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Demo of white box testing in Evosuite
Generates tests for all branches (1, 2, 3, null array, hidden bug, etc)

One of the generated JUnit test cases:

Q@Test (timeout = 4000)
public void test5() throws Throwable {
int[] intArray0 = new int[18];

intArrayO[1] = 3;

intArray0[3] = 3;

intArray0[4] = 21; // an array raising hidden bug!
try {

Main.Puzzle(intArray0, 1);
fail("Expecting exception: Error");
} catch(Error e) {
verifyException("temp.Main", e);
}
}
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Testing, to sum up

Strong and weak points
+ Done on the code — Finds real bugs!
+ Simple tests are easy to guess
— Good tests are not so easy to guess! (Recall TP0?)

+ Random and white box testing automate this task. May need an
oracle: a formula or a reference implementation.

— Finds bugs but cannot prove a property

+ Test coverage provides (at least) a metric on software quality

Some tool names
Klee, SAGE (Microsoft), PathCrawler (CEA), Evosuite, many others . ..

v

One killer result

SAGE (running on 200 PCs/year) found 1/3 of security bugs in Windows 7
https://www.microsoft.com/en-us/security-risk-detection/

4
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Model-checking principles

e

Spec
i

Finite

Mod

Where = is the usual logical consequence. This property is not shown by
doing a logical proof but by checking (by computation) that ...
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Model-checking principles (II)

-

Spec

Finite

Mod

Where D, Mod and Oracle are finite.
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Model-checking principle explained in Isabelle/HOL

Automaton digiCode.as and Isabelle file cm7.thy

Exercise 1

Define the lemma stating that whatever the initial state, typing A,B,C
leads execution to Final state.

Exercise 2

Define the lemma stating that the only possibility for arriving in the Final
state by typing three letters is to have typed A,B,C.
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Model-checking, to sum-up

Strong and weak points
+ Automatic and efficient
+ Can find bugs and prove the property
— For finite models only (e.g not on source code!)

+ Can deal with huge finite models (1020 states)
More than the number of atoms in the universe!

+ Can deal with finite abstractions of infinite models e.g. source code

— Incomplete on abstractions (but can find real bugs!)

Some tool names

SPIN, SMV, (bug finders) CBMC, SLAM, ESC-Java, Java path finder, ...

One killer result
INTEL processors are commonly model-checked
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Assisted proof principles

Where = is the usual logic consequence. This is proven directly on
formulas Mod and Spec. This proof guarantees that...
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Assisted proof principles (II)

&

Spec

> Mod

Where D, Mod, Oracle can be infinite.
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Assisted proof, to sum-up

Strong and weak points
+ Can do the proof or find bugs (with counterexample finders)
+ Proofs can be certified
— Needs assistance
— For models/prototypes only (not on source nor on EXE)

+ Proof holds on the source code if it is generated from the prototype

Some tool names
B, Coq, Isabelle/HOL, ACL2, PVS, ... Why, Frama-C, ...

One killer result
CompCert certified C compiler
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Static Analysis principles

# #
Source Oracle Oracle

Where abstraction v~ is a correct abstraction
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Static Analysis principles (I1)

# #
Source Oracle

[ J
Static Analyzer .3

Where abstraction v~ is a correct abstraction

e
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Static Analysis principles — Abstract Interpretation (II)

The abstraction '~~~ is based on the abstraction function abs:: D = D#

Depending on the verification objective, precision of abs can be adapted

Example 7 (Some abstractions of program variables for D=int)
(1) abs:: int = { L, T} where | = “undefined” and T = “any int"
(2) abs:: int = {1,Neg, Pos, Zero, NegOrZero, PosOrZero, T}

(3) abs:: int = {1} U Intervals on Z

Example 8 (Program abstraction with abs (1), (2) and (3))

(1) (2) (3)

x:= y+1; x=1 x=1 x=1

read(x) ; x=T x=T x=]-00;+0[
y:= x+10 y=T y=T y=1-00;+0 [
u:= 15; u=1l u=Pos u=[15;15]

x:= |x]| x=1 x=Pos0rZero x=[0;+0[

u:= x+u; u=71 u=Pos u=[15;+00[

e

Static Analysis: proving the correctness of the analyzer

BE

Spec

#
Source

Static Analyzer

® Formalize semantics of Source language, i.e. formalize an eval

Formalize the oracle: BAD predicate on program states

e Formalize the abstract domain D#

Formalize the static analyser SAn:: program = bool
* Prove correctness of SAn: V P. SAn(P) — (— BAD(eval(P)))

¢ ... Relies on the proof that ~~ is a correct abstraction
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Static Analysis principle explained in Isabelle/HOL

To abstract int, we define absInt as the abstract domain (D7):

Any
P N
Neg Zero Pos
~ | 7
Undef

datatype absInt= Neg|Zero|Pos|Undef |Any

Remark 1

Have a look at the concretization function (called concrete) defining sets
of integers represented by abstract elements Neg, Zero, etc.

v

Exercise 3

Define the function absPlus:: absInt = absInt = absInt (noted +7)

Exercise 4 (Prove that +7 is a correct abstraction of +)

x € concrete(x?) Ay € concrete(y?) — (x +y) € concrete(x? +7 y?)

V.
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Static Analysis, to sum-up

Strong and weak points
+ Can prove the property
+ Automatic
+ On the source code

— Not designed to find bugs

Some tool names
Astree (Airbus), Polyspace, Infer (Meta, though unsound and incomplete)

4

Two killer results

* Astree is used to successfully analyze 10° lines of code of the Airbus
A380 flight control system

® Millions of lines of Meta's production code are journally reviewed by
the infer static analyzer
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To sum-up on all presented techniques

Automation

Static Analysis

Testing Model-Checking

Expressivity

Assisted Proof

® Some properties are too complex to be verified using a static analyzer
® Testing can only be used to check finite properties

Model-checking deals only with finite models (to be built by hand)

Static analysis is always fully automatic
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To sum-up on all presented techniques

Accuracy

Testing

Static Analysis

Guarantee

Model{Checking Assisted Proof

e Testing works on EXE, Static analysis on source code, others on
models/prototypes

® Model-checking, assisted proof and static analysis have a similar
guarantee level except that assisted proofs can be certified
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A word about models/prototypes

Program verification using “formal methods” relies on:

has a Property

Abstraction Abstraction

Prototype — Logic Formula

This is the case for model-checking and assisted proof.
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Testing prototypes is a common practice in engineering

It is crucial for early detection of problems! Do you know Tacoma bridge?
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Testing prototypes is an engineering common practice (II)
More and more, prototypes are mathematical /numerical models

If the prototype is accurate: any detected problem is a real problem!
Problem on the prototype — Problem on the real system
But in general, we do not have the opposite:

No problem on the prototype +— No problem on the real system

T. Genet (ISTIC/IRISA) ACF-7 29/37

Why code exportation is a great plus?
Code exportation produces the program from the model itself!

has a Property

‘ ‘ Abstraction

Prototype # Logic Formula

Thus, we here have a great bonus: [TP5, TP67, TP89, CompCert]

No problem on the prototype — No problem on the real system
If the exported program is not efficient enough it can, at least, be used as

a reference implementation (an oracle) for testing the optimized one.
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Abstraction
-

About "Property Logic formula”

This is the only remaining difficulty, and this step is necessary!

Back to TPO, it is very difficult for two reasons:

@ The “what to do” is not as simple as it seems
® Many tests to write and what exactly to test?
® How to be sure that no test was missing?
® | ack of a concise and precise way to state the property
Defining the property with a french text is too ambigous!

® The “how to do” was not that easy

Logic Formula = factorization of tests
® guessing 1 formula is harder than guessing 1 test
® guessing 1 formula is harder than guessing 10 tests
e guessing 1 formula is not harder than guessing 100 tests
* guessing 1 formula is faster than writing 100 tests (TPO in Isabelle)
® proving 1 formula is stronger than writing infinitely many tests
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About formal methods and security

You have to use formal methods to secure your software
... because hackers will use them to find new attacks!

Be serious, do hackers read scientific papers?

or use academic stuff?

Yes, they do!
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Hackers do read scientific papers!

Hackers do read scientific papers!
Chip and PIN is Broken s C.onfe rence. Chip and PIN is Broken Conference
ecurity and Privacy Security and Privacy
Steven J. Murdoch, Saar Drimer, Ross Anderson, Mike Bond 2010 i .
University of Cambridge Steven J. Murdoch, S?ar [?rlmer' Ross Anderson, Mike Bond 20 10
Computer Laboratory 1 3 pages Ug{versn;y ojl";,;]ambtndgc
P ‘omputer Laboratory
Cambridge, UK Cambridge, UK 13 pageS
issuer terminal card EMV command protocol phase
seket fle IPAY.SYS.DDFOL_ } They revealed a weakness in the payment protocol of EMV
available applications (e.g Credit/Debit/ AT M) SELECT/READ RECORD
celoct application/start transaction seLeCT Cord mthertcaton They showed how to make a payment with a card without knowing the PIN
GET PROCESSING OPTIONS
signed records, Sig(signed records)
unsigned records READ RECORD...
PIN retry counter } GET DATA
PIN: XXXX Cardholder verification
PIN OK/Not OK VERIFY
T = (amount, currency, date, TVR, nonce, ...)
ARQC = (ATC, IAD, MAC(T, ATC, 1AD)) [ CENERATE AC
T, ARQC
ARPC, ARC Transaction authorization
ARPC, auth code } EXTERNAL AUTHENTICATE/
TC = (ATC, IAD, MAC(ARC, T, ATC, IAD)) [ GENERATE AC
—_—TC
2/ /7
Hackers do read scientific papers! Hackers do read scientific papers!
‘When Organized Crime Applies Academic Results When Organized Crime Applies Academic Results
A Forensic Analysis of an In-Card Listening Device Journal of A Forensic Analysis of an In-Card Listening Device Journal of
Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria Cryptogra ph IC Engl neerlng Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria Cryptogra ph Ic Engl neer ng
1 Ficole normale supérieure 2015 ! Fcole normale supérieure 2015
Computer Science Department Computer Science Department
45 rue d’Ulm, F-75230 Paris CEDEX 05, France
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45 rue d'Ulm, ¥-75230 Paris CEDEX 05, France

Criminals used the attack of Murdoch & al. but not:
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About formal methods and security

You have to use formal methods to secure your software
... because hackers will use them to find new attacks!

(1 formula) + (counter-example generator) — attack!
® Fuzzing of implementations using model-checking
* Finding bugs (to exploit) using white-box testing

* Finding errors in protocols using counter-example gen. (e.g. TP89)

= You will have to formally prove security of your software!
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