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Why using logic for specifying/verifying programs?
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Why using logic for specifying/verifying programs?
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Why using functional paradigm to program?
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Why using functional paradigm to program?
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Why using functional paradigm to program?
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Propositional logic: syntax and interpretations

Definition 1 (Propositional formula)
Let P be a set of propositional variables. The set of propositional formula
is defined by
„ ::= p | ¬„ | „1 ‚ „2 | „1 · „2 | „1 ≠æ „2 where p œ P

Definition 2 (Propositional interpretation)
An interpretation I associates to variables of P a value in {True, False}.

Example 3
Let „ = (p1 · p2) ≠æ p3. Let I be the interpretation such that
IJp1K = True, IJp2K = True and IJp3K = False.

T. Genet (ISTIC/IRISA) ACF-1 11 / 33

Propositional logic: syntax and interpretations (II)

We extend the domain of I to formulas as follows:

IJ¬„K =
I

True i� IJ„K = False

False i� IJ„K = True

IJ„1 ‚ „2K = True i� IJ„1K = True or IJ„2K = True

IJ„1 · „2K = True i� IJ„1K = True and IJ„2K = True

IJ„1 ≠æ „2K = True i�
I

IJ„1K = False or
IJ„1K = True and IJ„2K = True

Example 4
Let „ = (p1 · p2) ≠æ p3 and I the interpretation such that IJp1K = True,
IJp2K = True and IJp3K = False.

We have IJp1 · p2K = True and IJ(p1 · p2) ≠æ p3K = False.

T. Genet (ISTIC/IRISA) ACF-1 12 / 33



Propositional logic: syntax and interpretations (III)

The presentation using truth tables is generally preferred:

a ¬a
False True

True False

a b a ‚ b
False False False

True False True

False True True

True True True

a b a · b
False False False

True False False

False True False

True True True

a b a ≠æ b
False False True

True False False

False True True

True True True

T. Genet (ISTIC/IRISA) ACF-1 13 / 33

Propositional logic: models

Definition 5 (Propositional model)
I is a model of „, denoted by I |= „, if IJ„K = True.

Definition 6 (Valid formula/Tautology)
A formula „ is valid, denoted by |= „, if for all I we have I |= „.

Example 7
Let „ = (p1 · p2) ≠æ p3 and „Õ = (p1 · p2) ≠æ p1. Let I be the
interpretation such that IJp1K = True, IJp2K = True and IJp3K = False.
We have I ”|= „, I |= „Õ, and |= „Õ.
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Propositional logic: decidability and tools in Isabelle/HOL
Property 1
In propositional logic, given „, the following problems are decidable:

• Is |= „?
• Is there an interpretation I such that I |= „?
• Is there an interpretation I such that I ”|= „?

• To automatically prove that |= „ . . . . . . . . . . . . . . . . . . . . . . apply auto

(if the formula is not valid, there remains some unsolved goals)
• To build I such that I ”|= „ (or I |= ¬„) . . . . . . . . . . . . . . . . . . . nitpick

(i.e. find a counterexample... may take some time on large formula)
Other useful commands

• To close the proof of a proven formula. . . . . . . . . . . . . . . . . . . . . . . . .done

• To abandon the proof of an unprovable formula . . . . . . . . . . . . . . . oops

• To abandon the proof of (potentially) provable formula . . . . . . . sorry

T. Genet (ISTIC/IRISA) ACF-1 15 / 33

Writing and proving propositional formulas in Isabelle/HOL

Example 8 (Valid formula)
lemma "(p1 /\ p2) --> p1"

apply auto

done

Example 9 (Unprovable formula)
lemma "(p1 /\ p2) --> p3"

nitpick

oops

T. Genet (ISTIC/IRISA) ACF-1 16 / 33



Isabelle/HOL: ASCII notations

Symbol ASCII notation
True True

False False

· /\

‚ \/

¬ ˜

”= ˜=

≠æ -->

Ωæ =

’ ALL

÷ ?

⁄ %

See the Isabelle/HOL’s cheat sheet at the end of the document!

T. Genet (ISTIC/IRISA) ACF-1 17 / 33

Propositional logic: exercises in Isabelle/HOL

Exercise 1
Using Isabelle/HOL, for each formula, say if it is valid or give a
counterexample interpretation, otherwise.

1 A ‚ B
2 (((A · B) ≠æ ¬C) ‚ (A ≠æ B)) ≠æ A ≠æ C
3 If it rains, Robert takes his umbrella. Robert does not have his

umbrella hence it does not rain.
4 (A ≠æ B) Ωæ (¬A ‚ B)

T. Genet (ISTIC/IRISA) ACF-1 18 / 33

First-order logic (FOL) / Predicate logic

1 Terms and Formulas
2 Interpretations
3 Models
4 Logic consequence and verification

T. Genet (ISTIC/IRISA) ACF-1 19 / 33

First-order logic: terms

Definition 10 (Terms)
Let F be a set of symbols and ar a function such that ar : F ∆ N
associating each symbol of F to its arity (the number of parameter). Let
X be a variable set.

The set T (F , X ), the set of terms built on F and X , is defined by:
T (F , X ) = X fi {f (t1, . . . , tn) | ar(f ) = n and t1, . . . , tn œ T (F , X )}.

Example 11
Let F = {f : 1, g : 2, a : 0, b : 0} and X = {x , y , z}.

f (x), a, z , g(g(a, x), f (a)), g(x , x) are terms and belong to T (F , X ).

f , a(b), f (a, b), x(a), f (a, f (b)) do not belong to T (F , X ).

In term f (a, f (b)), terms a, f (b), and b are called subterms of (a, f (b)).
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First-order logic: formula syntax

Definition 12 (Formulas)
Let P be a set of predicate symbols all having an arity, i.e. ar : P ∆ N.
The set of formulas defined on F , X and P is:

„ ::= ¬„ | „1 ‚„2 | „1 ·„2 | „1 ≠æ „2 | ’x .„ | ÷x .„ | p(t1, . . . , tn)

where t1, . . . , tn œ T (F , X ), x œ X , p œ P and ar(p) = n.

Example 13
Let P = {p : 1, q : 2, Æ: 2}, F = {f : 1, g : 2, a : 0} and X = {x , y , z}.
The following expressions are all formulas:

• p(f (a))
• q(g(f (a), x), y)
• ’x .÷y .y Æ x
• ’x .’y .’z .x Æ y · y Æ z ≠æ x Æ z
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First-order logic syntax: the quiz

Quiz 1
Let P = {p : 1, q : 2, Æ: 2}, F = {f : 1, g : 2, a : 0} and X = {x , y , z}.

• a is a term V True R False
• x is a term V True R False
• f (g(a)) is a term V True R False
• ’x . x is a term V True R False
• ’x . x is a formula V True R False
• p(f (g(a, x))) is a formula V True R False
• ’x . p(x) · x Æ y is a formula V True R False
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Interlude: a touch of lambda-calculus

We need to define anonymous functions
• Classical notation for functions

f : N ◊ N ∆ N or, for short, f : N2 ∆ N
f (x , y) = x + y f (x , y) = x + y

• Lambda-notation of functions
f : N2 ∆ N
f = ⁄(x , y). x + y

⁄x y . x + y is an anonymous function adding two naturals
This corresponds to

• fun x y -> x+y in OCaml/Why3
• (x: Int, y:Int) => x + y in Scala
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Interlude: a touch of lambda-calculus (in Isabelle HOL)

Isabelle/HOL also use function update using (:=) as in:
• (⁄x .x)(0 := 1, 1 := 2) the identity function except for 0 that is

mapped to 1 and 1 that is mapped to 2
• (⁄x . )(a := b) a function taking one parameter and whose result is

unspecified except for value a that is mapped to b

Predicates in Isabelle/HOL
• A predicate is a function mapping values to {True, False}

For instance the predicate p on {a, b}
p =(⁄x . )(a := False, b := False)
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First-order formulas: interpretations and valuations
Definition 14 (First-order interpretation)
Let „ be a formula and D a domain. An interpretation I of „ on the
domain D associates:

• a function fI : Dn ∆ D to each symbol f œ F such that ar(f ) = n,
• a function pI : Dn ∆ {True, False} to each predicate symbol p œ P

such that ar(p) = n.

Example 15 (Some interpretations of „ = ’x .ev(x) ≠æ od(s(x)))
• Let I be the interpretation such that domain D = N and

sI © ⁄x .x + 1 evI © ⁄x .((x mod 2) = 0) odI © ⁄x .((x mod 2) = 1)
• Let I Õ be the interpretation such that domain D = {a, b} and

sIÕ © ⁄x .if x = a then b else a evIÕ © ⁄x .(x = a) odIÕ © ⁄x .False

Definition 16 (Valuation)
Let D be a domain. A valuation V is a function V : X ∆ D.
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First-order logic: interpretations and valuations (II)

Definition 17
The interpretation I of a formula „ for a valuation V is defined by:

• (I, V )JxK = V (x) if x œ X
• (I, V )Jf (t1, . . . , tn)K = fI((I, V )Jt1K, . . . , (I, V )JtnK) if f œ F and

ar(f ) = n
• (I, V )Jp(t1, . . . , tn)K = pI((I, V )Jt1K, . . . , (I, V )JtnK) if p œ P and

ar(p) = n
• (I, V )J„1 ‚ „2K = True i� (I, V )J„1K = True or (I, V )J„2K = True

• etc...
• (I, V )J’x .„K =

fi

dœD
(I, V + {x ‘æ d})J„K

• (I, V )J÷x .„K =
fl

dœD
(I, V + {x ‘æ d})J„K

where (V + {x ‘æ d})(x) = d and (V + {x ‘æ d})(y) = V (y) if x ”= y .
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First-order logic: satisfiability, models, tautologies

Definition 18 (Satisfiability)
I and V satisfy „ (denoted by (I, V ) |= „) if (I, V )J„K = True.

Definition 19 (First-order Model)
An interpretation I is a model of „, denoted by I |= „, if for all valuation
V we have (I, V ) |= „.

Definition 20 (First-order Tautology)
A formula „ is a tautology if all its interpretations are models,
i.e. (I, V ) |= „ for all interpretations I and all valuations V .

Remark 1
Free variables are universally quantified (e.g. P(x) equivalent to ’x . P(x))
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First-order logic: decidability and tools in Isabelle/HOL

Property 2
In first-order logic, given „, the following problems are undecidable:

• Is |= „?
• Is there an interpretation I (and valuation V ) such that (I, V ) |= „?
• Is there an interpretation I (and valuation V ) such that (I, V ) ”|= „?

• Try to automatically prove |= „ . . . . . . . . . . . . . . . . . . . . . . . apply auto

Uses decision procedures (e.g. arithmetic) to try to prove the formula.
If it does not succeed, it does not mean that the formula is
unprovable!

• Try to build I and V such that (I, V ) ”|= „ . . . . . . . . . . . . . . . . .nitpick

If it does not succeed, it does not mean that there is no
counterexample!
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First-order logic: exercises in Isabelle/HOL

Exercise 2
Using Isabelle/HOL, for each formula, say if it is valid or give a
counterexample interpretation and valuation otherwise.

1 ’x . p(x) ≠æ ÷x .p(x)
2 ÷x . p(x) ≠æ ’x .p(x)
3 ’x . ev(x) ≠æ od(s(x))
4 ’x y . x > y ≠æ x + 1 > y + 1
5 x > y ≠æ x + 1 > y + 1
6 ’m n. (¬(m < n) · m < n + 1) ≠æ m = n
7 ’x . ÷y . x + y = 0
8 ’y . (¬p(f (y))) Ωæ p(f (y))
9 ’y . (p(f (y)) ≠æ p(f (y + 1)))
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Isabelle/HOL notations: priority, associativity, shorthands
• Here are the logical operators in decreasing order of priority:

• =, ¬, ·, ‚, ≠æ, ’, ÷
• «a prioritary operator first chooses its operands»

• For instance
• ¬¬P = P means ¬¬(P = P) !
• A · B = B · A means A · (B = B) · A!
• P · ’x .Q(x) will be parsed as (P · ’)x .Q(x) !

Hence, write P · (’x .Q(x)) instead!

• All binary operators are associative to the right, for instance
A ≠æ B ≠æ C is equivalent to A ≠æ (B ≠æ C)

• Nested quantifications ’x . ’y . ’z . P can be abbreviated into ’x y z . P
• Free variables are universally quantified, i.e. P(x) is equiv. to

’x . P(x)

All Isabelle/HOL tools will prefer P(x) to ’x . P(x)

T. Genet (ISTIC/IRISA) ACF-1 30 / 33

First-order logic: satisfiability and models

Definition 21 (Satisfiable formula)
A formula „ is satisfiable if there exists an interpretation I and a valuation
V such that (I, V ) |= „.

Example 22
Let „ = p(f (y)) with F = {f : 1}, P = {p : 1}, X = {y}.
The formula „ is satisfiable (there exists (I, V ) such that (I, V ) |= „)

• Let I be the interp. s.t. D = {0, 1}, pI © ⁄x .(x = 0), fI = ⁄x .x
• Let V be the valuation such that V (y) = 0

We have (I, V ) |= „. With V Õ(y) = 1, (I, V Õ) ”|= „. Hence, I is not a
model of „.

• Let I Õ be the interp. s.t. D = {0, 1}, pIÕ © ⁄x .(x = 0), fIÕ = ⁄x .0
We have (I Õ, V ) |= „ for all valuation V , hence I Õ is a model of „.
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Satisfiability – the quiz

Quiz 2
Let P = {p : 1}, F = {f : 1, a : 0, b : 0} and X = {x}.

• f (a) is satisfiable V True R False
• p(f (a)) is satisfiable V True R False
• p(f (x)) is satisfiable V True R False
• p(f (x)) is a tautology V True R False
• ¬p(f (x)) is satisfiable V True R False
• ¬p(f (x)) · p(f (x)) is satisfiable V True R False
• p(f (a)) ≠æ p(f (b)) is satisfiable V True R False
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First-order logic: contradictions

Definition 23 (Contradiction)
A formula is contradictory (or unsatisfiable) if it cannot be satisfied,
i.e. (I, V ) ”|= „ for all interpretation I and all valuation V .

Property 3
A formula „ is contradictory i� ¬„ is a tautology.

Example 24 (See in Isabelle cm1.thy file)
Let „ = (’y . ¬p(f (y))) Ωæ (’y . p(f (y))). The formula „ is contradictory
and ¬„ is a tautology.
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Analyse et Conception Formelles

Lesson 2

–
Types, terms and functions

cb
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Outline

1 Terms
• Types
• Typed terms
• ⁄-terms
• Constructor terms

2 Functions defined using equations
• Logic everywhere!
• Function evaluation using term rewriting
• Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow’s lectures
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Types: syntax

· ::= (·)
| bool | nat | char | . . . base types
| Õa | Õb | . . . type variables
| · ∆ · functions
| · ◊ . . . ◊ · tuples (ascii for ◊: *)
| · list lists
| . . . user-defined types

The operator ∆ is right-associative, for instance:

nat ∆ nat ∆ bool is equivalent to nat ∆ (nat ∆ bool)
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Typed terms: syntax
term ::= (term)

| a a œ F or a œ X
| term term function application
| ⁄y . term function definition with y œ X
| (term, . . . , term) tuples
| [term, . . . , term] lists
| (term :: ·) type annotation
| . . . a lot of syntactic sugar

Function application is left-associative, for instance:
f a b c is equivalent to ((f a) b) c

Example 1 (Types of terms)
Term Type Term Type

y ’a t1 ’a
(t1,t2,t3) (’a ◊ ’b ◊ ’c) [t1,t2,t3] ’a list

⁄ y. y ’a ∆ ’a ⁄ y z. z ’a ∆ ’b ∆ ’b
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Types and terms: evaluation in Isabelle/HOL

To evaluate a term t in Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . value ”t”

Example 2
Term Isabelle’s answer
value ”True” True::bool
value ”2” Error (cannot infer result type)
value ”(2::nat)” 2::nat
value ”[True,False]” [True,False]::bool list
value ”(True,True,False)” (True,True,False)::bool * bool * bool
value ”[2,6,10]” Error (cannot infer result type)
value ”[(2::nat),6,10]” [2,6,10]::nat list
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Terms and functions: semantics is the ⁄-calculus
Semantics of functional programming languages consists of one rule:

(⁄ x . t) a ⇣— t{x ‘æ a} (—-reduction)
where t{x ‘æ a} is the term t where all occurrences of x are replaced by a

Example 3
• (⁄ x . x + 1) 10 ⇣— 10 + 1
• (⁄ x .⁄ y . x + y) 1 2 ⇣— (⁄ y . 1 + y) 2 ⇣— 1 + 2
• (⁄ (x , y). y) (1, 2) ⇣— 2

In Isabelle/HOL, to be —-reduced, terms have to be well-typed

Example 4
Previous examples can be reduced because:

• (⁄ x . x + 1) :: nat ∆ nat and 10 :: nat
• (⁄ x .⁄ y . x + y) :: nat ∆ nat ∆ nat and 1 :: nat and 2 :: nat
• (⁄ (x , y).y) :: (’a ◊ ’b) ∆ ’b and (1, 2) :: nat ◊ nat
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Lambda-calculus – the quiz

Quiz 1
• Function ⁄(x , y). x is a function with two parameters

V True R False

• Type of function ⁄(x , y). x is V ’a ◊ ’b ∆ ’a
R ’a ∆ ’b ∆ ’a

• If f::nat ∆ nat ∆ nat how to call f on 1 and 2?
V f(1,2) R (f 1 2)

• If f::nat ◊ nat ∆ nat how to call f on 1 and 2?
V f(1,2) R (f 1 2)
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Exercises on function definition and function call

Exercise 1 (In Isabelle/HOL)
Use append::’a list ∆ ’a list ∆ ’a list to concatenate 2 lists
of nat, and 3 lists of nat.

• To associate the value of a term t to a name n . . . . . . definition ”n=t”

Exercise 2 (In Isabelle/HOL)

1 Define the function addNc:: nat ◊ nat ∆ nat adding two naturals
2 Use addNc to add 5 to 6
3 Define the function add:: nat ∆ nat ∆ nat adding two naturals
4 Use add to add 5 to 6
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Interlude: a word about semantics and verification
• To verify programs, formal reasoning on their semantics is crucial!
• To prove a property „ on a program P we need to precisely and

exactly understand P’s behavior

For many languages the semantics is given by the compiler (version)!
• C, Flash/ActionScript, JavaScript, Python, Ruby, . . .

Some languages have a (written) formal semantics:
• Java a, subsets of C (hundreds of pages)
• Proofs are hard because of semantics complexity (e.g. KeY for Java)
ahttp://docs.oracle.com/javase/specs/jls/se7/html/index.html

Some have a small formal semantics:
• Functional languages: Haskell, subsets of (OCaml, F# and Scala)
• Proofs are easier since semantics essentially consists of a single rule
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Constructor terms
Isabelle distinguishes between constructor and function symbols

• A function symbol is associated to a (computable) function:
• all predefined function, e.g., append
• all user defined functions, e.g., addNc and add (see Exercise 2)

• A constructor symbol is not associated to a function

Definition 5 (Constructor term)
A term containing only constructor symbols is a constructor term.
A constructor term does not contain function symbols

Example 6
• Term [0, 1, 2] is a constructor term;
• Term (append [0,1,2] [4,5]) is not a constructor term (because of append);
• Term 18 is a constructor term;
• Term (add 18 19) is not a constructor term (because of add).
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Constructor terms (II)
All data are built using constructor terms without variables

...even if the representation is generally hidden by Isabelle/HOL

Example 7
• Natural numbers of type nat are terms: 0, (Suc 0), (Suc (Suc 0)), . . .
• Integer numbers of type int are couples of natural numbers:

. . . (0, 2), (0, 1), (0, 0), (1, 0), . . . represent . . . ≠2, ≠1, 0, 1 . . .
• Lists are built using the operators

• Nil : the empty list
• Cons: the operator adding an element to the (head) of the list

The term Cons 0 (Cons (Suc 0) Nil) represents the list [0, 1]

" Constructor symbols have types even if they do not “compute”

Example 8 (The type of constructor Cons)
Cons::’a ∆ ’a list ∆ ’a list
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Constructor terms – the quiz

Quiz 2
• Nil is a term? V True R False
• Nil is a constructor term? V True R False
• (Cons (Suc 0) Nil) is a constructor term?

V True R False
• ((Suc 0), Nil) is a constructor term? V True R False
• (add 0 (Suc 0)) is a constructor term? V True R False
• (Cons x Nil) is a constructor term? V True R False
• (add x y) is a constructor term? V True R False
• (Suc 0) is a constructor subterm of (add 0 (Suc 0))?

V True R False
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Constructor terms: Isabelle/HOL

For most of constructor terms there exists shortcuts:
• Usual decimal representation for naturals, integers and rationals

1, 2, -3, -45.67676, . . .
• [ ] and # for lists

e.g. Cons 0 (Cons (Suc 0) Nil) = 0#(1#[]) = [0, 1]
• Strings using 2 quotes e.g. ’’toto’’ (instead of "toto")

Exercise 3
1 Prove that 3 is equivalent to its constructor representation
2 Prove that [1, 1, 1] is equivalent to its constructor representation
3 Prove that the first element of list [1, 2] is 1
4 Infer the constructor representation of rational numbers of type rat
5 Infer the constructor representation of strings
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Isabelle Theory Library

Isabelle comes with a huge library of useful theories
• Numbers: Naturals, Integers, Rationals, Floats, Reals, Complex . . .
• Data structures: Lists, Sets, Tuples, Records, Maps . . .
• Mathematical tools: Probabilities, Lattices, Random numbers, . . .

All those theories include types, functions and lemmas/theorems

Example 9
Let’s have a look to a simple one Lists.thy:

• Definition of the datatype (with shortcuts)
• Definitions of functions (e.g. append)
• Definitions and proofs of lemmas (e.g. length append)

lemma ”length (xs @ ys) = length xs + length ys”
• Exportation rules for SML, Haskell, Ocaml, Scala (code printing)
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Isabelle Theory Library: using functions on lists
Some functions of Lists.thy

• append:: ’a list ∆ ’a list ∆ ’a list
• rev:: ’a list ∆ ’a list
• length:: ’a list ∆ nat
• List.member:: ’a list ∆ ’a ∆ bool
• map:: (’a ∆ ’b) ∆ ’a list ∆ ’b list

Exercise 4
1 Apply the rev function to list [1, 2, 3]
2 Prove that for all value x, reverse of the list [x ] is equal to [x ]
3 Prove that append is associative
4 Prove that append is not commutative
5 Prove that an element is in a reversed list if it is in the original one
6 Using map, from the list [(1, 2), (3, 3), (4, 6)] build the list [3, 6, 10]
7 Using map, from the list [1, 2, 3] build the list [2, 4, 6]
8 Prove that map does not change the size of a list
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Outline

1 Terms
• Types
• Typed terms
• ⁄-terms
• Constructor terms

2 Functions defined using equations
• Logic everywhere!
• Function evaluation using term rewriting
• Partial functions
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Defining functions using equations
• Defining functions using ⁄-terms is hardly usable for programming
• Isabelle/HOL has a ”fun” operator as other functional languages

Definition 10 (fun operator for defining (recursive) functions)
fun f :: ”·1 ∆ . . . ∆ ·n ∆ ·”
where
” f t1

1 . . . t1
n = r1 ” |

. . . |
” f tm

1 . . . tm
n = rm ”

for all i = 1 . . . n and k = 1 . . . m
(tk

i ::·i) are constructor terms possibly
with variables, and (rk ::·) are terms

Example 11 (The contains function on lists (2 versions in cm2.thy))
fun contains:: "’a => ’a list => bool"
where
"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"
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Function definition – the quiz
Quiz 3 (Is this function definition correct? V Yes R No )
fun f:: "nat ∆ nat ∆ bool"
where
"f x y = (x + y)"

Quiz 4 (Is this function definition correct? V Yes R No )
fun g:: "nat ∆ nat ∆ bool"
where
"g 0 y = False"

Quiz 5 (Is this function definition correct? V Yes R No )
fun pos:: "nat ∆ bool"
where
"pos 0 = False" |
"pos (Suc x) = True"
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Function definition – the quiz (II)

Quiz 6 (Is this function definition correct? V Yes R No )
fun pos2:: "nat ∆ bool"
where
"pos2 0 = False" |
"pos2 (x + 1) = True"

Quiz 7 (Is this function definition correct? V Yes R No )
fun isDivisor:: "nat ∆ nat ∆ bool"
where
"isDivisor x y = (÷ z. x * z = y)"
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Total and partial Isabelle/HOL functions

Definition 12 (Total and partial functions)
A function is total if it has a value (a result) for all elements of its domain.
A function is partial if it is not total.

Definition 13 (Complete Isabelle/HOL function definition)
fun f :: ”·1 ∆ . . . ∆ ·n ∆ ·”
where
” f t1

1 . . . t1
n = r1 ” |

. . . |
” f tm

1 . . . tm
n = rm ”

f is complete if any call f t1 . . . tn with
(ti :: ·i), i = 1 . . . n is covered by one
case of the definition.

Example 14 (Isabelle/HOL ”Missing patterns” warning)
When the definition of f is not complete, an uncovered call of f is shown.
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Total and partial Isabelle/HOL functions (II)

Theorem 15
Complete and terminating Isabelle/HOL functions are total, otherwise they
are partial.

Question 1
Why termination of f is necessary for f to be total?

Remark 1
All functions in Isabelle/HOL needs to be terminating!
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Outline

1 Terms
• Types
• Typed terms
• ⁄-terms
• Constructor terms

2 Functions defined using equations
• Logic everywhere!
• Function evaluation using term rewriting
• Partial functions

Acknowledgements: some slides are borrowed from T. Nipkow’s lectures
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Logic everywhere!
In the end, everything is defined using logic:

• data, data structures: constructor terms
• properties: lemmas (logical formulas)
• programs: functions (also logical formulas!)

Definition 16 (Equations (or simplification rules) defining a function)
A function f consists of a set f.simps of equations on terms.

To visualize a lemma/theorem/simplification rule . . . . . . . . . . . . . . . . . . . .thm
For instance: thm "length append", thm "append.simps"

To find the name of a lemma, etc. . . . . . . . . . . . . . . . . . . . . . .find theorems
For instance: find theorems "append" " + "

Exercise 5
Use Isabelle/HOL to find the following formulas:

• definition of contains (we just defined) and of nth (part of List.thy)
• find the lemma relating rev (part of List.thy) and length
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Evaluating functions by rewriting terms using equations

The append function (aliased to @) is defined by the 2 equations:

(1) append Nil x = x (* recall that Nil=[] *)
(2) append (x#xs) y = (x#(append xs y))

Replacement of equals by equals = Term rewriting
The first equation (append Nil x) = x means that

• (concatenating the empty list with any list x) is equal to x
• we can thus replace

• any term of the form (append Nil t) by t (for any value t)
• wherever and whenever we encounter such a term append Nil t
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Term Rewriting in three slides
• Rewriting term (append Nil (append Nil a)) using

(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

append

Nil append

Nil a
append

Nil x
⇣ a x

append

Nil

⇣ a

• We note (append Nil (append Nil a)) ⇣ (append Nil a) if
• there exists a position in the term where the rule matches
• there exists a substitution ‡ : X ‘æ T (F) for the rule to match.

On the example ‡ = {x ‘æ a}
• We also have (append Nil a) ⇣ a

and
append

Nil append

Nil a

append

Nil x

⇣ append
x

Nil a
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Term Rewriting in three slides – Formal definitions

Definition 17 (Substitution)
A substitution ‡ is a function replacing variables of X by terms of
T (F , X ) in a term of T (F , X ).

Example 18
Let F = {f : 3, h : 1, g : 1, a : 0} and X = {x , y , z}.

Let ‡ be the substitution ‡ = {x ‘æ g(a), y ‘æ h(z)}.

Let t = f (h(x), x , g(y)).

We have ‡(t) = f (h(g(a)), g(a), g(h(z))).
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Term Rewriting in three slides – Formal definitions (II)
Definition 19 (Rewriting using an equation)
A term s can be rewritten into the term t (denoted by s ⇣ t) using an
Isabelle/HOL equation l=r if there exists a subterm u of s and a
substitution ‡ such that u = ‡(l). Then, t is the term s where subterm u
has been replaced by ‡(r).

Example 20
Let s = f (g(a), c) and g(x) = h(g(x),b) the Isabelle/HOL equation.
we have f ( g(a) , c) ⇣ f ( h(g(a), b) , c)
because g(x) = h(g(x),b) and ‡ = {x ‘æ a}

On the opposite t = f (a, c) cannot be rewritten by g(x) = h(g(x),b).

Remark 2

Isabelle/HOL rewrites terms using equations in the order of the function
definition and only from left to right.
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Term rewriting – the quiz

Quiz 8
Let F = {f : 1, g : 1, a : 0} and X = {x , y}.

• Rewriting the term f (g(g(a))) with equation g(x) = x is
V Possible R Impossible

• To rewrite the term f (g(g(a))) with g(x) = x the substitution ‡ is
V {x ‘æ a} R {x ‘æ g(a)}

• Rewriting the term f (g(g(y))) with equation g(x) = x is
V Possible R Impossible

• Rewriting the term f (g(g(y))) with equation g(f (x)) = x is
V Possible R Impossible
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Isabelle evaluation = rewriting terms using equations
(1) append Nil x = x
(2) append (x#xs) y = (x#(append xs y))

Rewriting the term: append [1,2] [3,4] with (1) then (2) (Rmk 2)
First, recall that [1,2] = (1#(2#Nil)) and [3,4] = (3#(4#Nil))!
append (1#(2#Nil)) (3#(4#Nil)) ”⇣(1) ⇣(2)
(1# (append (2#Nil) (3#(4#Nil))))}
with ‡ = {x ‘æ 1, xs ‘æ (2#Nil), y ‘æ (3#(4#Nil))}
(1# (append (2#Nil) (3#(4#Nil)))) ⇣(2)
(1# (2#(append Nil (3#(4#Nil)))))
with ‡ = {x ‘æ 2, xs ‘æ Nil , y ‘æ (3#(4#Nil))}
(1#(2# (append Nil (3#(4#Nil))))) ⇣(1)
(1#(2# (3#(4#Nil)) )) = [1,2,3,4] !
with ‡ = {x ‘æ (3#(4#Nil))}

Example 21
See demo of step by step rewriting in Isabelle/HOL!
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Isabelle evaluation = rewriting terms using equations (II)

(1) contains e [] = False
(2) contains e (x # xs)= (if e=x then True else (contains e xs))

Evaluation of test: contains 2 [1,2,3]
⇣ if 2=1 then True else (contains 2 [2,3])

by equation (2), because [1,2,3] = 1#[2,3]
⇣ if False then True else (contains 2 [2,3])

by Isabelle equations defining equality on naturals
⇣ contains 2 [2,3]

by Isabelle equation (if False then x else y = y)
⇣ if 2=2 then True else (contains 2 [3])

by equation (2), because [2,3] = 2#[3]
⇣ if True then True else (contains 2 [3])

by Isabelle equations defining equality on naturals
⇣ True

by Isabelle equation (if True then x else y = x)
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Lemma simplification= Rewriting + Logical deduction

(1) contains e [] = False
(2) contains e (x # xs)= (if e=x then True else (contains e xs))

Proving the lemma: contains y [z,y,v]
⇣ if y=z then True else (contains y [y,v])

by equation (2), because [z,y,v] = z#[y,v]
⇣ if y=z then True else (if y=y then True else (contains y [v]))

by equation (2), because [y,v] = y#[v]
⇣ if y=z then True else (if True then True else (contains y [v]))

because y=y is trivially True
⇣ if y=z then True else True

by Isabelle equation (if True then x else y = x)
⇣ True

by logical deduction (if b then True else True)ΩæTrue

T. Genet (ISTIC/IRISA) ACF-2 31 / 34

Lemma simplification= Rewriting + Logical deduction (II)

(1) contains e [] = False
(2) contains e (x # xs) = (if e=x then True else (contains e xs))

(3) append [] x = x
(4) append (x # xs) y = x # (append xs y)

Exercise 6
Is it possible to prove the lemma contains u (append [u] v) by
simplification/rewriting?

Exercise 7
Is it possible to prove the lemma contains v (append u [v]) by
simplification/rewriting?

Demo of rewriting in Isabelle/HOL!
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Evaluation of partial functions
Evaluation of partial functions using rewriting by equational definitions
may not result in a constructor term

Exercise 8
Let index be the function defined by:

fun index:: "’a => ’a list => nat"
where
"index y (x#xs) = (if x=y then 0 else 1+(index y xs))"

• Define the function in Isabelle/HOL
• What does it computes?
• Why is index a partial function? (What does Isabelle/HOL says?)
• For index, give an example of a call whose result is:

• a constructor term
• a match failure

• Define the property relating functions index and List.nth
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Scala export + Demo
To export functions to Haskell, SML, Ocaml, Scala . . . . . . . . export code
For instance, to export the contains and index functions to Scala:
export_code contains index in Scala

test.scala

object cm2 {
def contains[A : HOL.equal](e: A, x1: List[A]): Boolean =
(e, x1) match {

case (e, Nil) => false
case (e, x :: xs) => (if (HOL.eq[A](e, x)) true

else contains[A](e, xs))
}
def index[A : HOL.equal](y: A, x1: List[A]): Nat =
(y, x1) match {

case (y, x :: xs) =>
(if (HOL.eq[A](x, y)) Nat(0)
else Nat(1) + index[A](y, xs))

}
}
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Analyse et Conception Formelles

Lesson 3

–
Recursive Functions and Algebraic Data Types

cb
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Recursion everywhere... and nothing else

«Recursion in computer science is a method where the solution to a
problem depends on solutions to smaller instances of the same problem»

• The «bad» news: in Isabelle/HOL, there is no while, no for, no
mutable arrays and no pointers, . . .

• The good news: you don’t really need them to program!
• The second good news: programs are easier to prove without all that!

In Isabelle/HOL all complex types and functions are defined using recursion
• What theory says: expressive power of recursive-only languages and

imperative languages is equivalent
• What functional programmers say: it is as it should always be
• What other programmers say: it is tricky but you always get by
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Outline

1 Recursive functions
• Definition
• Termination proofs with measures
• Di�erence between fun, function and primrec

2 (Recursive) Algebraic Data Types
• Defining Algebraic Data Types using datatype
• Building objects of Algebraic Data Types
• Matching objects of Algebraic Data Types
• Type abbreviations

Acknowledgements:
some material is borrowed from T. Nipkow and S. Blazy’s lectures
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Recursive Functions
• A function is recursive if it is defined using itself.
• Recursion can be direct

fun contains:: "’a => ’a list => bool"
where
"contains e [] = False" |
"contains e (x#xs) = (e=x \/ (contains e xs))"

• ... or indirect. In this case, functions are said to be mutually recursive.
fun even:: "nat => bool"
and odd:: "nat => bool"
where

"even 0 = True" |
"even (Suc x) = odd x" |
"odd 0 = False" |
"odd (Suc x) = even x"
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Terminating Recursive Functions
In Isabelle/HOL, all the recursive functions have to be terminating!

How to guarantee the termination of a recursive function? (practice)
• Needs at least one base case (non recursive case)
• Every recursive case must go towards a base case
• ... or every recursive case «decreases» the size of one parameter

How to guarantee the termination of a recursive function? (theory)
• If f ::·1 ∆ . . . ∆ ·n ∆ · then define a measure function

g::·1 ◊ . . . ◊ ·n ∆ N
• Prove that the measure of all recursive calls is decreasing

To prove termination of f f (t1) ⇣ f (t2) ⇣ . . .
Prove that g(t1) > g(t2) > . . .

• The ordering > is well founded on N
i.e. no infinite decreasing sequence of naturals n1 > n2 > . . .

T. Genet (ISTIC/IRISA) ACF-3 5 / 19

Terminating Recursive Functions (II)

How to guarantee the termination of a recursive function? (theory)
• If f ::·1 ∆ . . . ∆ ·n ∆ · then define a measure function

g::·1 ◊ . . . ◊ ·n ∆ N
• Prove that the measure of all recursive calls is decreasing

To prove termination of f f (t1) ⇣ f (t2) ⇣ . . .
Prove that g(t1) > g(t2) > . . .

Example 1 (Proving termination using a measure)

"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

1 We define the measure g = ⁄(x , y). (length y)

2 We prove that ’e x xs. g(e, (x#xs)) > g(e, xs)
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Proving termination with measure – the quiz
Quiz 1

• Proving termination of a function f ensures that the evaluations of

(f t) will terminate for V some t R all possible t

• For a function f::’a list ∆ ’a list a measure function should

be of type V ’a list ∆ ’a list R ’a list ∆ nat
• For the function f::nat list ∆ nat list

"f [] = []" |
"f (x#xs) = (if x=1 then [x] else xs)"

V We do not need a measure function

R The only possible measure is ⁄x . (length x)
• For function f::nat list ∆ nat list

"f [] = []" |
"f (x#xs)= (if x=1 then (f(x#xs)) else (f xs))"

V There is no measure function

R The only possible measure is ⁄x . (length x)

T. Genet (ISTIC/IRISA) ACF-3 7 / 19

Terminating Recursive Functions (III)

How to guarantee the termination of a recursive function? (Isabelle/HOL)
• Define the recursive function using fun
• Isabelle/HOL automatically tries to build a measure1

• If no measure is found the function is rejected
• If it is not terminating, make it terminating!
• Try to modify it so that its termination is easier to show

Otherwise
• Re-define the recursive function using function (sequential)
• Manually give a measure to achieve the termination proof

1Actually, it tries to build a termination ordering but it has the same objective.
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Terminating Recursive Functions (IV)
Example 2
A definition of the contains function using function is the following:

function (sequential) contains::"’a ∆ ’a list ∆ bool"
where
"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

apply pat_completeness Prove that the function is ”complete”
apply auto i.e. patterns cover the domain
done

Prove its termination using the measure
termination contains proposed in Example 1
apply (relation "measure (⁄(x,y). (length y))")
apply auto
done
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Terminating Recursive Functions (V)

Exercise 1
Define the following functions, see if they are terminating. If not, try to

modify them so that they become terminating.

fun f::"nat => nat"
where
"f x=f (x - 1)"

fun f2::"int => int"
where
"f2 x = (if x=0 then 0 else f2 (x - 1))"

fun f3::"nat => nat => nat"
where
"f3 x y= (if x >= 10 then 0 else f3 (x + 1) (y + 1))"
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Terminating Recursive Functions (VI)
Automatic termination proofs (fun definition) are generally enough

• Covers 90% of the functions commonly defined by programmers
• Otherwise, it is generally possible to adapt a function to fit this setting

Most of the functions are terminating by construction (primitive recursive)

Definition 3 (Primitive recursive functions: primrec)
Functions whose recursive calls «peels o�» exactly one constructor

Example 4 (contains can be defined using primrec instead of fun)
primrec contains:: "’a => ’a list => bool"
where
"contains e [] = False" |
"contains e (x#xs)= (if e=x then True else (contains e xs))"

For instance, in List.thy:
• 26 ”fun”, 34 ”primrec” with automatic termination proofs
• 3 ”function” needing measures and manual termination proofs.
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Recursive functions, exercises

Exercise 2
Define the following recursive functions

• A function sumList computing the sum of the elements of a list of

naturals

• A function sumNat computing the sum of the n first naturals

• A function makeList building the list of the n first naturals

State and verify a lemma relating sumList, sumNat and makeList
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Outline

1 Recursive functions
• Definition
• Termination proofs with orderings
• Termination proofs with measures
• Di�erence between fun, function and primrec

2 (Recursive) Algebraic Data Types
• Defining Algebraic Data Types using datatype
• Building objects of Algebraic Data Types
• Matching objects of Algebraic Data Types
• Type abbreviations
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(Recursive) Algebraic Data Types
Basic types and type constructors (list, ∆, *) are not enough to:

• Define enumerated types
• Define unions of distinct types
• Build complex structured types

Like all functional languages, Isabelle/HOL solves those three problems
using one type construction: Algebraic Data Types (sum-types in OCaml)

Definition 5 (Isabelle/HOL Algebraic Data Type)
To define type · parameterized by types (–1, . . . , –n):
datatype (–1, . . . , –n)· = C1 ·1,1 . . . ·1,n1 with C1, . . . , Cn

| . . . capitalized identifiers
| Ck ·1,k . . . ·1,nk

Example 6 (The type of (polymorphic) lists, defined using datatype)
datatype ’a list = Nil (* Nil and Cons are capitalized *)

| Cons ’a "’a list"
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Building objects of Algebraic Data Types
Any definition of the form

datatype (–1, . . . , –n)· = C1 ·1,1 . . . ·1,n1
| . . .
| Ck ·1,k . . . ·1,nk

also defines constructors C1, . . . , Ck for objects of type (–1, . . . , –n)·
The type of constructor Ci is ·i ,1 ∆ . . . ∆ ·i ,ni ∆ (–1, . . . , –n)·

Example 7

datatype ’a list = Nil
| Cons ’a "’a list" defines constructors

Nil::’a list and Cons::’a ∆ ’a list ∆ ’a list
Hence,

• Cons (3::nat) (Cons 4 Nil) is an object of type nat list
• Cons (3::nat) is an object of type nat list ∆ nat list
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Matching objects of Algebraic Data Types

Objects of Algebraic Data Types can be matched using case expressions:
(case l of Nil => ... | (Cons x r) => ...)

possibly with wildcards, i.e. ”_”
(case i of 0 => ... | (Suc _) => ...)

and nested patterns
(case l of (Cons 0 Nil) => ... | (Cons (Suc x) Nil) => ...)

possibly embedded in a function definition

fun first::"’a list =>’a list" fun first::"’a list =>’a list"
where where

"first Nil = Nil" | "first [] = []" |
"first (Cons x _) = (Cons x Nil)" "first (x#_) = [x]"
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Building objects of Algebraic Data Types – the quiz
Quiz 2 (we define datatype abstInt= Any | Mint int )

• How to build an object of type abstInt from integer 13?

V 13 R (Mint 13)

• How to build the object Any of type abstInt?

V Any R (Mint Any)

• To check if a variable x::abstInt contains an integer how to do?

V (case x of (Mint ) => True | Any => False)
R x= (Mint )

• Let f be defined by f::abstInt ∆ abstInt ∆ abstInt
"f (Mint x) (Mint y) = (Mint x+y)" |
"f = Any"

What is the value of:

(f (Mint 1) (Mint 2)) (f Any (Mint 2))
V Any
R Mint 3

V Any
R Undefined

T. Genet (ISTIC/IRISA) ACF-3 17 / 19

Algebraic Data Types, exercises

Exercise 3
Define the following types and build an object of each type using value

• The enumerated type color with possible values: black, white and

grey

• The type token union of types string and int
• The type of (polymorphic) binary trees whose elements are of type ’a

Define the following functions

• A function notBlack that answers true if a color object is not black

• A function sumToken that gives the sum of two integer tokens and 0
otherwise

• A function merge::color tree ∆ color that merges all colors in

a color tree (leaf is supposed to be black)
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Type abbreviations

In Isabelle/HOL, it is possible to define abbreviations for complex types
To introduce a type abbreviation . . . . . . . . . . . . . . . . . . . . . . . . type synonym

For instance:
• type_synonym name="(string * string)"
• type_synonym (’a,’b) pair="(’a * ’b)"

Using those abbreviations, objects can be explicitly typed:
• value "(’’Leonard’’,’’Michalon’’)::name"
• value "(1,’’toto’’)::(nat,string)pair"

... though the type synonym name is ignored in Isabelle/HOL output /
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Analyse et Conception Formelles

Lesson 4

–
Proofs with a proof assistant

cb
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Prove logic formulas ... to prove programs
fun nth:: "nat => ’a list => ’a"
where
"nth 0 (x#_)=x" |
"nth x (y#ys)= (nth (x - 1) ys)"

fun index:: "’a => ’a list => nat"
where
"index x (y#ys)= (if x=y then 1 else 1+(index x ys))"

lemma nth_index: "nth (index e l) l= e"

How to prove the lemma nth index? (Recall that everything is logic!)

What we are going to prove is thus a formula of the form:
Theory of

lists · Equations
for nth · Equations

for index ≠æ nth index
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Outline
1 Finding counterexamples

• nitpick
• quickcheck

2 Proving true formulas
• Proof by cases: apply (case tac x)
• Proof by induction: apply (induct x)
• Combination of decision procedures: apply auto and apply simp
• Solving theorems in the Cloud: sledgehammer

Acknowledgements: some material is borrowed from T. Nipkow’s lectures
and from Concrete Semantics by Nipkow and Klein, Springer Verlag, 2016.

More details (in french) about those proof techniques can be found in:
• http://people.irisa.fr/Thomas.Genet/ACF/TPs/pc.thy
• CM4 video and “Principes de preuve avancés” video
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Finding counterexamples
Why? because «90% of the theorems we write are false!»

• Because this is not what we want to prove!
• Because the formula is imprecise
• Because the function is false
• Because there are typos...

Before starting a proof, always first search for a counterexample!

Isabelle/HOL o�ers two counterexample finders:
• nitpick: uses finite model enumeration

+ Works on any logic formula, any type and any function
- Rapidly exhausted on large programs and properties

• quickcheck: uses random testing, exhaustive testing and narrowing
- Does not covers all formula and all types

+ Scales well even on large programs and complex properties
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Nitpick

To build an interpretation I such that I ”|= „ (or I |= ¬„) . . . . . . . nitpick

nitpick principle: build an interpretation I |= ¬„ on a finite domain D

• Choose a cardinality k

• Enumerate all possible domains D· of size k for all types · in ¬„

• Build all possible interpretations of functions in ¬„ on all D·

• Check if one interpretation satisfy ¬„ (this is a counterexample for „)
• If not, there is no counterexample on a domain of size k for „

nitpick algorithm:
• Search for a counterexample to „ with cardinalities 1 upto n

• Stops when I such that I |= ¬„ is found (counterex. to „), or
• Stops when maximal cardinality n is reached (10 by default), or
• Stops after 30 seconds (default timeout)
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Nitpick (II)
Exercise 1
By hand, iteratively check if there is a counterexample of cardinality 1, 2, 3
for the formula „, where „ is length la <= 1 .

Remark 1
• The types occurring in „ are ’a and ’a list
• One possible domain DÕa of cardinality 1: {a1}
• One possible domain DÕa list of cardinality 1: {[ ]} {[a1]}

Domains have to be subterm-closed, thus {[a1]} is not valid

• One possible domain DÕa of cardinality 2: {a1, a2}
• Two possible domains DÕa list of cardinality 2: {[ ], [a1]} and {[ ], [a2]}

• One possible domain DÕa of cardinality 3: {a1, a2, a3}
• Twelve possible domains DÕa list of cardinality 3: {[ ], [a1], [a1, a1]},

{[ ], [a1], [a2]}, {[ ], [a1], [a3, a1]}, . . . {[ ], [a1], [a3, a2]} (Demo!)
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Nitpick (III)
nitpick options:

• timeout=t, set the timeout to t seconds (timeout=none possible)
• show all, displays the domains and interpretations for the counterex.
• expect=s, specifies the expected outcome where s can be none (no

counterexample) or genuine (a counterexample exists)
• card=i-j, specifies the cardinalities to explore

For instance:

nitpick [timeout=120, show_all, card=3-5]

Exercise 2
• Explain the counterexample found for rev l = l
• Is there a counterexample to the lemma nth_index?

• Correct the lemma and definitions of index and nth
• Is the lemma append_commut true? really?
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Quickcheck
To build an interpretation I such that I ”|= „ (or I |= ¬„) . . . . quickcheck

quickcheck principle: test „ with automatically generated values of size k

Either with a generator
• Random: values are generated randomly (Haskell’s QuickCheck)
• Exhaustive: (almost) all values of size k are generated (TP4bis)
• Narrowing: like exhaustive but taking advantage of symbolic values

No exhautiveness guarantee!! with any of them

quickcheck algorithm:
• Export Haskell code for functions and lemmas
• Generate test values of size 1 upto n and, test „ using Haskell code
• Stops when a counterexample is found, or
• Stops when max. size of test values has been reached (default 5), or
• Stops after 30 seconds (default timeout)
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Quickcheck (II)
quickcheck options:

• timeout=t, set the timeout to t seconds
• expect=s, specifies the expected outcome where s can be

no counterexample, counterexample or no expectation
• tester=tool, specifies generator to use where tool can be random,

exhaustive or narrowing
• size=i, specifies the maximal size of testing values

For instance: quickcheck [tester=narrowing,size=6]

Exercise 3 (Using quickcheck)
• find a counterexample on TP0 (solTP0.thy, CM4_TP0)

• find a counterexample for length_slice

Remark 2
Quickcheck first generates values and then does the tests. As a result, it

may not run the tests if you choose bad values for size and timeout.
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Counter-example finders – the quiz
Quiz 1 (On (N)itpick and (Q)uickcheck counter-example finders)

• If Q/N finds a counter-example on „
V „ is contradictory

R „ is not valid

• If Q/N do not find a cex on „
V „ is valid

R We do not know anything

• Which of Q/N is the most powerful?
V Q

R N

Quiz 2 (If Isabelle/HOL accepts lemma „ closed by done)

• Then
V „ is valid

R „ is satisfiable

• There may remain some counter-example
V True

R False
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What to do next?
When no counterexample is found what can we do?

• Increase the timeout and size values for nitpick and quickcheck?
• ... go for a proof!

Any proof is faster than an infinite time nitpick or quickcheck

Any proof is more reliable than an infinite time nitpick or quickcheck
(They make approximations or assumptions on infinite types)

The five proof tools that we will focus on:
1 apply case tac
2 apply induct
3 apply auto
4 apply simp
5 sledgehammer
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How do proofs look like?
A formula of the form A1 · . . . · An is represented by the proof goal:

goal (n subgoals):
1. A1
...
n. An

Where each subgoal to prove is either a formula of the formw
x1 . . . xn. B meaning prove B, orw
x1 . . . xn. B =∆ C meaning prove B ≠æ C , orw
x1 . . . xn. B1 =∆ . . . Bn =∆ C meaning prove B1 · . . . · Bn ≠æ C

and
w

x1 . . . xn means that those variables are local to this subgoal.

Example 1 (Proof goal)
goal (2 subgoals):
1. contains e [] =∆ nth (index e []) [] = e
2.

w
a l. e ”= a =∆ contains e (a # l) =∆

¬ contains e l =∆ nth (index e l) l = e
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Proof by cases

... possible when the proof can be split into a finite number of cases

Proof by cases on a formula F
Do a proof by cases on a formula F . . . . . . . . . . . . .apply (case tac "F")
Splits the current goal in two: one with assumption F and one with ¬ F

Example 2 (Proof by case on a formula)
With apply (case tac "F::bool")
goal (1 subgoal):
1. A =∆ B

becomes
goal (2 subgoals):
1. F =∆ A =∆ B
2. ¬ F =∆ A =∆ B

Exercise 4
Prove that for any natural number x, if x < 4 then x ú x < 10.
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Proof by cases (II)
Proof by cases on a variable x of an enumerated type of size n
Do a proof by cases on a variable x . . . . . . . . . . . . .apply (case tac "x")
Splits the current goal into n goals, one for each case of x.

Example 3 (Proof by case on a variable of an enumerated type)
In Course 3, we defined datatype color= Black | White | Grey
With apply (case tac "x")

goal (1 subgoal):
1. P (x::color) becomes

goal (3 subgoals):
1. x = Black =∆ P x
2. x = White =∆ P x
3. x = Grey =∆ P x

Exercise 5
On the color enumerated type or course 3, show that for all color x if the

notBlack x is true then x is either white or grey.
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Proof by induction
«Properties on recursive functions need proofs by induction»

Recall the basic induction principle on naturals:

P(0) · ’x œ N. (P(x) ≠æ P(x + 1)) ≠æ ’x œ N. P(x)

All recursive datatype have a similar induction principle, e.g. ’a lists:

P([ ]) · ’e œ ’a. ’l œ ’a list.(P(l) ≠æ P(e#l)) ≠æ ’l œ ’a list.P(l)

Etc...

Example 4
datatype ’a binTree= Leaf | Node ’a "’a binTree" "’a binTree"

P(Leaf) · ’e œ ’a. ’t1 t2 œ ’a binTree.
(P(t1) · P(t2) ≠æ P(Node e t1 t2)) ≠æ ’t œ ’a binTree.P(t)
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Proof by induction (II)
P([ ]) · ’e œ ’a. ’l œ ’a list.(P(l) ≠æ P(e#l)) ≠æ ’l œ ’a list.P(l)

Example 5 (Proof by induction on lists)
Recall the definition of the function append:

(1) append [] l = l
(2) append (x#xs) l = x#(append xs l)

To prove ’l œ ’a list. (append l [ ]) = l by induction on l , we prove:
1 append [ ] [ ] = [ ], proven by the first equation of append
2 ’e œ ’a. ’l œ ’a list.

(append l [ ]) = l ≠æ (append (e#l) [ ]) = (e#l)
using the second equation of append, it becomes
(append l [ ]) = l ≠æ e#(append l [ ]) = (e#l)
using the (induction) hypothesis, it becomes
(append l [ ]) = l ≠æ e#l = (e#l)
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Proof by induction: apply (induct x)
To apply induction principle on variable x . . . . . . . . . . . apply (induct x)

Conditions on the variable chosen for induction (induction variable):
• The variable x has to be of an inductive type (nat, datatypes, . . . )

Otherwise apply (induct x) fails
• The terms built by induction cases should easily be reducible!

Example 6 (Choice of the induction variable)
(1) append [ ] l = l

(2) append (x#xs) l = x#(append xs l)
To prove ’l1 l2 œ ’a list. (length (append l1 l2)) Ø (length l2)

An induction proof on l1, instead of l2, is more likely to succeed:
• an induction on l1 will require to prove:

(length (append (e#l1) l2) Ø (length l2)
• an induction on l2 will require to prove:

(length (append l1 (e#l2)) Ø (length (e#l2))
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Proof by induction: apply (induct x) (II)

Exercise 6
Recall the datatype of binary trees we defined in lecture 3. Define and

prove the following properties:

1 If contains x t, then there is at least one node in the tree t.

2 Relate the fact that x is a sub-tree of y and their number of nodes.

Exercise 7
Recall the functions sumList, sumNat and makeList of lecture 3. Try to

state and prove the following properties:

1 Relate the length of list produced by makeList i and i
2 Relate the value of sumNat i and i
3 Give and try to prove the property relating those three functions
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Proof by induction: generalize the goals
By defaut apply induct may produce too weak induction hypothesis

Example 7
When doing an apply (induct x) on the goal P (x::nat) (y::nat)
goal (2 subgoals):
1. P 0 y
2.

w
x. P x y =∆ P (Suc x) y

In the subgoals, y is
fixed/constant!

Example 8
With apply (induct x arbitrary:y) on the same goal
goal (2 subgoals):
1.

w
y. P 0 y

2.
w

x y. P x y =∆ P (Suc x) y

The subgoals range over
any y

Exercise 8
Prove the sym lemma on the leq function.
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Proof by induction: : induction principles
Recall the basic induction principle on naturals:

P(0) · ’x œ N. (P(x) ≠æ P(x + 1)) ≠æ ’x œ N. P(x)

In fact, there are infinitely many other induction principles
• P(0) · P(1) · ’x œ N. ((x > 0 · P(x)) ≠æ P(x + 1)) ≠æ ’x œ N. P(x)
• . . .
• Strong induction on naturals

’x , y œ N. ((y < x · P(y)) ≠æ P(x)) ≠æ ’x œ N. P(x)
• Well-founded induction on any type having a well-founded order <<

’x , y . ((y << x · P(y)) ≠æ P(x)) ≠æ ’x . P(x)
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Proof by induction: : induction principles (II)

Apply an induction principle adapted to the function call (f x y z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . apply (induct x y z rule:f.induct)

Apply strong induction on variable x of type nat

. . . . . . . . . . . . . . . . . . . . . . . . . . . apply (induct x rule:nat less induct)
Apply well-founded induction on a variable x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . apply (induct x rule:wf induct)

Exercise 9
Prove the lemma on function divBy2.
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Combination of decision procedures auto and simp
Automatically solve or simplify all subgoals . . . . . . . . . . . apply auto
apply auto does the following:

• Rewrites using equations (function definitions, etc)
• Applies a bit of arithmetic, logic reasoning and set reasoning
• On all subgoals
• Solves them all or stops when stuck and shows the remaining subgoals

Automatically simplify the first subgoal . . . . . . . . . . . . . . apply simp
apply simp does the following:

• Rewrites using equations (function definitions, etc)
• Applies a bit of arithmetic
• on the first subgoal
• Solves it or stops when stuck and shows the simplified subgoal
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Combination of decision procedures auto and simp (II)

Want to know what those tactics do?
• Add the command using [[simp trace=true]] in the proof script
• Look in the output bu�er

Example 9
Switch on tracing and try to prove the lemma:

lemma "(index (1::nat) [3,4,1,3]) = 2"
using [[simp_trace=true]]
apply auto
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Sledgehammer Sledgehammer

129

«Sledgehammers are often used in destruction work...»
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Sledgehammer
«Solve theorems in the Cloud»

Architecture:
Formula to prove

+ relevant definitions and lemmas
Isabelle/HOL ≠æ External ATPs1

Ω≠ Local or in the Cloud
Proof (click on it)

Prove the first subgoal using state-of-the-art2 ATPs . . . . . . sledgehammer
• Call to local or distant ATPs: SPASS, E, Vampire, CVC4, Z3, etc.
• Succeeds or stops on timeout (can be extended, e.g. [timeout=120])
• Provers can be explicitely selected (e.g. [provers= z3 spass]
• A proof consists of applications of lemmas or definition using the

Isabelle/HOL tactics: metis, smt, simp, fast, etc.
1Automatic Theorem Provers
2See http://www.tptp.org/CASC/.
T. Genet (ISTIC/IRISA) ACF-4 25 / 27

Sledgehammer (II)
Remark 3
By default, sledgehammer does not use all available provers. But, you can

remedy this by defining, once for all, the set of provers to be used:

sledgehammer_params [provers=cvc4 spass z3 e vampire]

Exercise 10
Finish the proof of the property relating nth and index

Exercise 11
Recall the functions sumList, sumNat and makeList of lecture 3. Try to

state and prove the following properties:

1 Prove that there is no repeated occurrence of elements in the list

produced by makeList
2 Finish the proof of the property relating those three functions
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Hints for building proofs in Isabelle/HOL
When stuck in the proof of prop1, add relevant intermediate lemmas:

1 In the file, define a lemma before the property prop1
2 Name the lemma (say lem1) (to be used by sledgehammer)
3 Try to find a counterexample to lem1
4 If no counterexample is found, close the proof of lem1 by sorry
5 Go back to the proof of prop1 and check that lem1 helps
6 If it helps then prove lem1. If not try to guess another lemma

To build correct theories, do not confuse oops and sorry:
• Always close an unprovable property by oops
• Always close an unfinished proof of a provable property by sorry

Example 10 (Everything is provable using contradictory lemmas)
We can prove that 1 + 1 = 0 using a false lemma.
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Scala in a nutshell
• “Scalable language”: small scripts to architecture of systems

• Designed by Martin Odersky at EPFL
• Programming language expert
• One of the designers of the Java compiler

• Pure object model: only objects and method calls (”= Java)

• With functional programming: higher-order, pattern-matching, . . .

• Fully interoperable with Java (in both directions)

• Concise smart syntax ( ”= Java)

• A compiler and a read-eval-print loop integrated into the IDE
Scala worksheets!!
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Outline
1 Basics

Base types and type inference
Control : if and match - case
Loops (for) and structures: Lists, Tuples, Maps

2 Functions
Basic functions
Anonymous, Higher order functions and Partial application

3 Object Model
Class definition and constructors
Method/operator/function definition, overriding and implicit defs
Traits and polymorphism
Singleton Objects
Case classes and pattern-matching

4 Interactions with Java
Interoperability between Java and Scala

5 Isabelle/HOL export in Scala
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Base types and type annotations

• 1:Int, "toto":String, ’a’:Char, ():Unit

• Every data is an object, including base types!
e.g. 1 is an object and Int is its class

• Every access/operation on an object is a method call!
e.g. 1 + 2 executes: 1.+(2) (o.x(y) is equivalent to o x y)

Exercise 1
Use the max(Int) method of class Int to compute the maximum of 1+2
and 4.
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Subtyping and class hierarchy – the quiz

Quiz 1
1 12 is of type Int. V True R False

2 Int is a subtype of Any. V True R False

3 12 is of type Any. V True R False

4 Int is a subtype of Double. V True R False

5 12 of type Double. V True R False

6 null of type List. V True R False

7 12 of type Nothing. V True R False

8 "toto" of type Any. V True R False
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val and var
• val associates an object to an identifier and cannot be reassigned
• var associates an object to an identifier and can be reassigned
• Scala philosophy is to use val instead of var whenever possible
• Types are (generally) automatically inferred

scala> val x=1 // or val x:Int = 1
x: Int = 1

scala> x=2
<console>:8: error: reassignment to val

x=2
ˆ

scala> var y=1
y: Int = 1

scala> y=2
y: Int = 2
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if expressions
• Syntax is similar to Java if statements ...

but that they are not statements but typed expressions
• if ( condition ) e1 else e2

Remark: the type of this expression is the supertype of e1 and e2

• if ( condition ) e1 // else ()
Remark: the type of this expression is the supertype of e1 and Unit

Quiz 2 (What is the smallest type for the following expressions)
1 if (1==2) 1 else 2 V Int R Any

2 if (1==2) 1 else "toto" V Int R Any

3 if (1==2) 1 V AnyVal R Int

4 if (1==1) println(1) V Any R Unit
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match - case expressions

• Replaces (and extends) the usual switch - case construction
• The syntax is the following:

e match {
case pattern1 => r1 //patterns can be constants
case pattern2 => r2 //or terms with variables

... //or terms with holes: ’ ’
case => rn

}
• Remark: the type of this expression is the supertype of r1, r2, . . . rn
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Match-case – the quiz

Quiz 3 (What is the value of the following expression?)
val x= "bonjour"
x match {

case "au revoir" => "goodbye"
case _ => "don’t know"
case "bonjour" => "hello"

}

V "hello"
R "don’t know"

Quiz 4 (What is the value of the following expression?)
val x= "bonj"
x match {

case "au revoir" => "goodbye"
case "bonjour" => "hello"

}

V Undefined

R "hello"

T. Genet (ISTIC/IRISA) ACF-5 16 / 39



(Immutable) Lists: List[A]
• List definition (with type inference)

val l= List(1,2,3,4,5)

• Adding an element to the head of a list
val l1= 0::l

• Adding an element to the queue of a list
val l2= l1:+6

• Concatenating lists
val l3= l1++l2

• Getting the element at a given position
val x= l2(2)

• Doing pattern-matching over lists
l2 match {

case Nil => 0
case e:: => e

}
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Immutable lists – the quiz

Quiz 5 (Is this program valid?)
val li= List("zero","un","deux")
li(1)="one" V Yes R No

Quiz 6 (Is this program valid?)
var li= List("zero","un","deux")
li(1)="one" V Yes R No

Quiz 7 (Is this program valid?)
val li= List(1,"toto",2)
val l2= li ++ List(3,4) V Yes R No
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Immutable lists – the quiz
Quiz 8 (Is this program valid?)
var li= List(1,2,3)
li= li ++ List(5,6) V Yes R No

Quiz 9 (What is the result printed by this program?)
val t1= Array(4,5,6)
val t2= t1
t2(1)= -4
println(t1(1))

V -4 R 5

Quiz 10 (What is the result printed by this program?)
var li= List(1,2,3)
var l2= li
l2= l2.updated(1,10)
println(li(1))

V 10 R 2
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for loops

• for ( ident <- s ) e
Remark: s has to be a subtype of Traversable
(Arrays, Collections, Tables, Lists, Sets, Ranges, . . . )

• Usual for-loops can be built using .to(...)
”(1).to(5)” © ”1 to 5” results in Range(1, 2, 3, 4, 5)

Exercise 2
Given val lb=List(1,2,3,4,5) and using for, build the list of squares

of lb.

Exercise 3
Using for and println build a usual 10 ◊ 10 multiplication table.
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(Immutable) Tuples : (A,B,C,...)

• Tuple definition (with type inference)
scala> val t= (1,"toto",18.3)
t: (Int, String, Double) = (1,toto,18.3)

• Tuple getters: t. 1, t. 2, etc.

• ... or with match - case:
t match { case (2,"toto", ) => "found!"

case ( ,x, ) => x
}

The above expression evaluates in "toto"
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(Immutable) maps : Map[A,B]

• Map definition (with type inference)
val m= Map(’C’ -> "Carbon",’H’ -> "Hydrogen")
Remark: inferred type of m is Map[Char,String]

• Finding the element associated to a key in a map, with default value
m.getOrElse(’K’,"Unknown")

• Adding an association in a map
val m1= m+(’O’ -> "Oxygen")

• A Map[A,B] can be traversed (using for) as a Collection of pairs
of type Tuple[A,B], e.g. for((k,v) <- m){ ... }

Exercise 4
Print all the keys of map m1
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Basic functions
• def f ( arg1: Type1, ..., argn:Typen ): Typef = { e }

Remark 1: type of e (the type of the last expression of e) is Typef
Remark 2: Typef can be inferred for non recursive functions

Remark 3: The type of f is : (Type1,. . . ,Typen) Typef

Example 1
def plus(x:Int,y:Int):Int={

println("Sum of "+x+" and "+y+" is equal to "+(x+y))
x+y // no return keyword

} // the result of the function is the last expression

Exercise 5
Using a map, define a phone book and the functions

addName(name:String,tel:String), getTel(name:String):String,

getUserList:List[String] and getTelList:List[String].
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Anonymous functions and Higher-order functions
• The anonymous Scala function adding one to x is:

((x:Int) => x + 1)
Remark: it is written (⁄ x . x + 1) in Isabelle/HOL

• A higher order function takes a function as a parameter
e.g. method/function map called on a List[A] takes a function
(A =>B) and results in a List[B]

scala> val l=List(1,2,3)
l: List[Int] = List(1, 2, 3)

scala> l.map ((x:Int) => x+1)
res1: List[Int] = List(2, 3, 4)

Exercise 6
Using map and the capitalize method of the class String, define the

capUserList function returning the list of capitalized user names.
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Partial application

• The ’ ’ symbol permits to partially apply a function
e.g. getTel( ) returns the function associated to getTel

Example 2 (Other examples of partial application)
( :String).size ( :Int) + ( :Int) ( :String) == "toto"

Exercise 7
Using map and partial application on capitalize, redefine the function

capUserList.

Exercise 8
Using the higher order function filter on Lists, define a function

above(n:String):List(String) returning the list of users having a

capitalized name greater to name n.
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Class definition and constructors
• class C(v1: type1, . . . , vn:typen)¸ ˚˙ ˝

the primary constructor

{ ... }

e.g. class Rational(n:Int,d:Int){
val num=n // can use var instead
val den=d // to have mutable objects
def isNull():Boolean=(this.num==0)

}

• Objects instances can be created using new:
val r1= new Rational(3,2)

• Fields and methods of an object can be accessed via “dot notation”
if (r1.isNull()) println("rational is null")
val double r1= new Rational(r1.num*2,r1.den)

Exercise 9
Complete the Rational class with an add(r:Rational):Rational
function.
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Overriding, operator definitions and implicit conversions
• Overriding is explicit: override def f(...)

Exercise 10
Redefine the toString method of the Rational class.

• All operators ’+’, ’*’, ’==’, ’>’, . . . can be used as function names
e.g. def +(x:Int):Int= ...
Remark: when using the operator recall that x.+(y) © x + y

Exercise 11
Define the ’+’ and ’*’ operators for the class Rational.

• It is possible to define implicit (automatic) conversions between types
e.g. implicit def bool2int(b:Boolean):Int= if b 1 else 0

Exercise 12
Add an implicit conversion from Int to Rational.
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Traits

• Traits stands for interfaces (as in Java)
trait IntQueue {

def get:Int
def put(x:Int):Unit

}

• The keyword extends defines trait implementation
class MyIntQueue extends IntQueue{

private var b= List[Int]()
def get= {val h=b(0); b=b.drop(1); h}
def put(x:Int)= {b=b:+x}

}
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Singleton objects
• Singleton objects are defined using the keyword object

trait IntQueue {
def get:Int
def put(x:Int):Unit

}

object InfiniteQueueOfOne extends IntQueue{
def get=1
def put(x:Int)={}

}

• A singleton object does not need to be “created” by new

InfiniteQueueOfOne.put(10)
InfiniteQueueOfOne.put(15)
val x=InfiniteQueueOfOne.get
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Type abstraction and Polymorphism
Parameterized function/class/trait can be defined using type parameters

trait Queue[T]{ // more generic than IntQueue
def get:T
def push(x:T):Unit

}

class MyQueue[T] extends Queue[T]{
protected var b= List[T]()

def get={val h=b(0); b=b.drop(1); h}
def put(x:T)= {b=b:+x}

}

def first[T1,T2](pair:(T1,T2)):T1=
pair match case (x,y) => x

T. Genet (ISTIC/IRISA) ACF-5 32 / 39



Case classes

• Case classes provide a natural way to encode Algebraic Data Types
e.g. binary expressions built over rationals: 18

27 + ≠(1
2)

trait Expr
case class BinExpr(o:String,l:Expr,r:Expr) extends Expr
case class Constant(r:Rational) extends Expr
case class Inv(e:Expr) extends Expr

• Instances of case classes are built without new
e.g. the object corresponding to 18

27 + ≠(1
2) is built using:

BinExpr("+",Constant(new Rational(18,27)),
Inv(Constant(new Rational(1,2))))
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Case classes and pattern-matching
trait Expr
case class BinExpr(o:String,l:Expr,r:Expr) extends Expr
case class Constant(r:Rational) extends Expr
case class Inv(e:Expr) extends Expr

• match case can directly inspect objects built with case classes
def getOperator(e:Expr):String= {

e match {
case BinExpr(o,_,_) => o
case _ => "No operator"

}
}

Exercise 13
Define an eval(e:Expr):Rational function computing the value of any

expression.
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Interoperablity between Java and Scala
• In Scala, it is possible to build objects from Java classes

e.g. val txt:JTextArea=new JTextArea("")

• And to define scala classes/objects implementing Java interfaces
e.g. object Window extends JFrame

• There exists conversions between Java and Scala data structures
import scala.collection.JavaConverters._

val l1:java.util.List[Int]= new java.util.ArrayList[Int]()
l1.add(1); l1.add(2); l1.add(3) // l1: java.util.List[Int]

val sb1= l1.asScala.toList // sl1: List[Int]
val sl1= sb1.asJava // sl1: java.util.List[Int]

}

• Remark: it is also possible to use Scala classes and Object into Java
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Outline
1 Basics

Base types and type inference
Control : if and match - case
Loops (for) and structures: Lists, Tuples, Maps

2 Functions
Basic functions
Anonymous, Higher order functions and Partial application

3 Object Model
Class definition and constructors
Method/operator/function definition, overriding and implicit defs
Traits and polymorphism
Singleton Objects
Case classes and pattern-matching

4 Interactions with Java
Interoperability between Java and Scala

5 Isabelle/HOL export in Scala
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Isabelle/HOL exports Scala case classes and functions...
theory tp
[...]
datatype ’a tree= Leaf | Node "’a * ’a tree * ’a tree"
fun contains:: "’a ∆ ’a tree ∆ bool"
where
"contains _ Leaf = False" |
"contains x (Node(y,l,r)) = (if x=y then True else ((contains x l)

‚ (contains x r)))"

to Scala
object tp {

abstract sealed class tree[+A] // similar to traits
case object Leaf extends tree[Nothing]
case class Node[A](a: (A, (tree[A], tree[A]))) extends tree[A]
def contains[A : HOL.equal](uu: A, x1: tree[A]): Boolean =

(uu, x1) match {
case (uu, Leaf) => false
case (x, Node((y, (l, r)))) => (if (HOL.eq[A](x, y)) true

else contains[A](x, l) || contains[A](x, r))
}

} T. Genet (ISTIC/IRISA) ACF-5 38 / 39

... and some more cryptic code for Isabelle/HOL equality
object HOL {

trait equal[A] {
val ‘HOL.equal‘: (A, A) => Boolean

}

def equal[A](a: A, b: A)(implicit A: equal[A]): Boolean =
A.‘HOL.equal‘(a, b)

def eq[A : equal](a: A, b: A): Boolean = equal[A](a, b)

}

To link Isabelle/HOL code and Scala code, it can be necessary to add:

implicit def equal_t[T]: HOL.equal[T] = new HOL.equal[T] {
val ‘HOL.equal‘ = (a: T, b: T) => a==b

}

Which defines HOL.equal[T] for all types T as the Scala equality ==
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Analyse et Conception Formelles

Lesson 6

–
Certified Programming

cb
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Outline

1 Certified program production lines
• Some examples of certified code production lines
• What are the weak links?
• How to certify a compiler?
• How to certify a static analyzer of code?
• How to guarantee the correctness of proofs?

2 Methodology for formally defining programs and properties
• Simple programs have simple proofs
• Generalize properties when possible
• Look for the smallest trusted base
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B code production line
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• The first certified code production line used in the industry
• For security critical code
• Used for onboard automatic train control of metro 14 (RATP)
• Several industrial users: RATP, Alstom, Siemens, Gemalto
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Scade/Astree/CompCert code production line










fun...
lemma...



































 






















 






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

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
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


























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








fun...
lemma...

   








• The (next) Airbus code production line
• For security critical code (e.g flight control)
• Scade uses model-checking to verify programs or find counterexamples
• Astree is a static analyzer of C programs proving the absence of

• division by zero, out of bound array indexing
• arithmetic overflows

• Frama-C is a proof tool for C prog. (close to Why), automated
provers like Alt-Ergo, CVC4, Z3, etc. and the Coq proof assistant

• CompCert is a certified C compiler (X. Leroy & S. Blazy, etc.)
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Isabelle to Scala line
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• Used for specification and verification of industrial size softwares
e.g. Operating system kernel seL4 (C code)

• Code generation not yet used at an industrial level
• More general purpose line than previous ones
• All proofs performed in Isabelle are checked by a trusted kernel
• Formalization/Verification of other parts is ongoing research

e.g. some research e�orts for certifying a JVM
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What are the weak links of such lines?
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1 The initial choice of algorithms and properties
2 The verification tools (analyzers and proof assistants)
3 Code generators/compilers

=∆ we need some guaranties on each link!
1 Certification of compilers
2 Certification of static analyzers
3 Verification of proofs in proof assistant
4 Methodology for formally defining algorithms and properties

=∆ we need to limit the trusted base!
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How to limit the trusted base?
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How to limit the trusted base?
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How to limit the trusted base?
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How to certify a compiler?
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What is the property to prove? ’ P1. P1 «behaves» like P2
How can we prove this?

• Need to formally describe behaviors of programs:
• Formal semantics for language A and language B
• Close to defining an interpreter (using terms and functions) (¥TP4)

i.e. define evalA(prog,inputs) and evalB(prog,inputs)
• Then, prove that ’ P1 P2 s.t. P2=compil(P1):

• ’ inputs. evalA(P1,inputs) stops Ωæ evalB(P2,inputs) stops, and
• ’ inputs. evalA(P1,inputs) = evalB(P2,inputs)

• Proving this by hand is unrealistic (recall the size of Java semantics)
• Use a proof assistant... compiler is correct if the proof assistant is!
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How to certify a static analyzer (SAn)? (TP67)
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What is the property to prove?
’ P. SAn(P)=True ≠æ «nothing bad happens when executing P»

How can we prove this?
• Again, we need to formally describe behaviors of programs:

• Formal semantics of language of P, define eval(prog,inputs)
• We need to formalize the analyzer and what is a «bad» behavior

• Formalize «bad» , i.e. define a BAD predicate on program results
• Formalize the analyser SAn

• Then, prove that the static analyzer is safe:
’ P. ’ inputs. (SAn(P)= True) ≠æ ¬ BAD(eval(P,inputs))

• Again, proving this by hand is unrealistic
• Use a proof assistant... analyzer is correct if the proof assistant is!
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Static analysis – the quiz

Quiz 1

• What is a static analyzer good at?
V Proving a property

R Finding bugs

• Is a static analyzer running the program to analyze?
V Yes

R No

• Is a static analyzer has access to the user inputs?
V Yes

R No

• Given a program P, eval and BAD, can we verify by computation that

for all inputs, ¬ BAD(eval(P,inputs))? V Yes R No

• Given a program P, and SAn can we verify by computation that

SAn(P)=True? V Yes R No
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How to certify a static analyzer (SAn)? (II)

Isabelle file cm6.thy

Exercise 1
Define a static analyzer san for such programs:

san:: program ∆ bool

Exercise 2
Define the BAD predicate on program states:

BAD:: pgState ∆ bool

Exercise 3
Define the correctness lemma for the static analyzer san.
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In the end, we managed to do this...
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How to guarantee correctness of proofs in proof assistants?
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How to be convinced by the proofs done by a proof assistant?
• Relies on complex algorithms
• Relies on complex logic theories
• Relies on complex decision procedures

=∆ there may be bugs everywhere!
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Weak points of proof assistants

A proof in a proof assistant is a tree whose leaves are axioms

True

φ1

φ3

φ8 φ7φ9

φ4 φ5

φ6

φ

True

True

True

φ10

φ2 D
e
c
id

a
b
le

True Di�erence with a proof on paper:
• Far more detailed
• A lot of axioms
• Shortcuts: External decision

procedures

Axioms =∆ fewer details

Decision Proc. =∆ automatization

Axioms and decision procedures are the main weaknesses of proof assistants

Choices made in Coq, Isabelle/HOL, PVS, ACL2, etc. are very di�erent
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Proof handling : di�erences between proof assistants

Coq PVS Isabelle ACL2
Axioms minimum free minimum free

and fixed and fixed
Decision proofs trusted proofs trusted
procedures checked (no check) checked (no check)

by Coq by Isabelle
Proof terms built-in no additional no
System basic in between in between good
automatization
Counterexample basic basic yes yes
generator
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Proof checking: how is it done in Isabelle/HOL?
Isabelle/HOL have a well defined and «small » trusted base

• A kernel deduction engine (with Higher-order rewriting)
• Few axioms for each theory (see HOL.thy, HOL/Nat.thy)
• Other properties are lemmas, i.e. demonstrated using the axioms

All proofs are carried out using this trusted base:
• Proofs directly done in Isabelle (auto/simp/induct/...)
• All proofs done outside (sledgehammer) are re-interpreted in Isabelle

using metis or smt that construct an Isabelle proof

Example 1
Prove the lemma (x + 4) ú (y + 5) Ø x ú y using sledgehammer.

1 Interpret the found proof using metis
2 Switch on tracing: add

using [[simp_trace=true,simp_trace_depth_limit=5]]
before the apply command

3 Re-interpret the proof
T. Genet (ISTIC/IRISA) ACF-6 18 / 23

Outline

1 Certified program production lines
• Some examples of certified code production lines
• What are the weak links?
• How to certify a compiler?
• How to certify a static analyzer of code?
• How to guarantee the correctness of proofs?

2 Methodology for formally defining programs and properties
1 Simple programs have simple proofs
2 Generalize properties when possible
3 Look for the smallest trusted base

T. Genet (ISTIC/IRISA) ACF-6 19 / 23

Simple programs have simple proofs : Simple is beautiful

Example 2 (The intersection function of TP2/3)
An «optimized» version of intersection is harder to prove.

1 Program function f(x) as simply as possible... no optimization yet!
• Use simple data structures for x and the result of f(x)
• Use simple computation methods in f

2 Prove all the properties lem1, lem2, ... needed on f

3 (If necessary) program fopt(x) an optimized version of f
• Optimize computation of fopt
• Use optimized data structure if necessary

4 Prove that ’ x. f(x)=fopt(x)

5 Using the previous lemma, prove again lem1, lem2, ... on fopt
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Simple programs have simple proofs (II)

Exercise 4
The function fastReverse is a tail-recursive version of reverse. Prove

the classical lemmas on fastReverse using the same properties of

reverse:

• fastReverse (fastReverse l)=l
• fastReverse (l1@l2)= (fastReverse l2)@(fastReverse l1)

Exercise 5
Prove that the fast exponentiation function fastPower enjoys the classical

properties of exponentiation:

• x
y ú x

z = x
(y+z)

• (x ú y)z = x
z ú y

z

• x
yz = x

(yúz)
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Generalize properties when possible
Exercise 6 (On List.member and intersection of TP2/3)

• Prove that ((List.member l1 e) · (List.member l2 e)) ≠æ
(List.member (intersection l1 l2) e)

• How to generalize this property?

• What is the problem with the given function intersection?

Exercise 7 (On function clean of TP2/3)
• Prove that clean [x,y,x]=[y,x]
• How to generalize this property of clean?

• What is the problem with the given definition of function clean?

Exercise 8 (On functions List.member and delete of TP2/3)
• Try to prove that

List.member l x ≠æ List.member l y ≠æ x”=y ≠æ
(List.member (delete y l) x)

• How to generalize the property to ease the proof?T. Genet (ISTIC/IRISA) ACF-6 22 / 23

Limit the trusted base in your Isabelle theories
Trusted base = functions that you cannot prove and have to trust

Basic functions on which lemmas are di�cult to state

To verify a function f, define lemmas using f and:
• functions of the trusted base
• other proven functions

Example 3
In TP2/3, which functions can be a good trusted base?

Remark: There can be some interdependent functions to prove!

Example 4 (Prove a parser and a prettyPrinter on programs)
• parser:: string ∆ prog
• prettyPrinter:: prog ∆ string

The property to prove is: ’ p. parser(prettyPrinter p) = p
prettyPrinter is more likely to be trusted since it is simpler
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Analyse et Conception Formelles

Lesson 7

–
Program verification methods

cb

T. Genet (ISTIC/IRISA) ACF-7 1 / 37

Outline

1 Testing
2 Model-checking
3 Assisted proof
4 Static Analysis
5 A word about protoypes/models, accuracy, code generation
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Disclaimer

Theorem 1 (Rice, 1953)
Any nontrivial property about the language recognized by a Turing

machine is undecidable.

“The more you prove the less automation you have”
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The basics

Definition 2 (Specification)
A complete description of the behavior of a software.

Definition 3 (Oracle)
An oracle is a mechanism determining whether a test has passed or failed,
w.r.t a specification.

Definition 4 (Domain (of Definition))
The set of all possible inputs of a program, as defined by the specification.
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Notations

Spec the specification
Mod a formal model or formal prototype of the software

Source the source code of the software
EXE the binary executable code of the software

D the domain of definition of the software
Oracle an oracle

D# an abstract definition domain
Source# an abstract source code
Oracle# an abstract oracle
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Testing principles
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Testing principles (random generators)
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This is what Isabelle/HOL quickcheck does (and TP4Bis)
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Testing principles (white box testing)
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Definition 5 (Code coverage)
The degree to which the source code of a program has been tested, e.g. a
statement coverage of 70% means that 70% of all the statements of the
software have been tested at least once.
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Demo of white box testing in Evosuite

Objective: cover 100% of code (and raised exceptions)

Example 6 (Program to test with Evosuite)
public static int Puzzle(int[] v, int i){

if (v[i]>1) {

if (v[i+2]==v[i]+v[i+1]) {

if (v[i+3]==v[i]+18)

throw new Error("hidden bug!");

else return 1;}

else return 2;}

else return 3;

}
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Demo of white box testing in Evosuite
Generates tests for all branches (1, 2, 3, null array, hidden bug, etc)

One of the generated JUnit test cases:
@Test(timeout = 4000)

public void test5() throws Throwable {

int[] intArray0 = new int[18];

intArray0[1] = 3;

intArray0[3] = 3;

intArray0[4] = 21; // an array raising hidden bug!

try {

Main.Puzzle(intArray0, 1);

fail("Expecting exception: Error");

} catch(Error e) {

verifyException("temp.Main", e);

}

}
T. Genet (ISTIC/IRISA) ACF-7 10 / 37

Testing, to sum up
Strong and weak points

+ Done on the code ›Ñ Finds real bugs!
+ Simple tests are easy to guess
– Good tests are not so easy to guess! (Recall TP0?)

+ Random and white box testing automate this task. May need an
oracle: a formula or a reference implementation.

– Finds bugs but cannot prove a property
+ Test coverage provides (at least) a metric on software quality

Some tool names
Klee, SAGE (Microsoft), PathCrawler (CEA), Evosuite, many others . . .

One killer result
SAGE (running on 200 PCs/year) found 1/3 of security bugs in Windows 7
https://www.microsoft.com/en-us/security-risk-detection/

T. Genet (ISTIC/IRISA) ACF-7 11 / 37

Model-checking principles
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Where |ù is the usual logical consequence. This property is not shown by
doing a logical proof but by checking (by computation) that ...
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Model-checking principles (II)
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Where D, Mod and Oracle are finite.
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Model-checking principle explained in Isabelle/HOL

Automaton digiCode.as and Isabelle file cm7.thy

Exercise 1
Define the lemma stating that whatever the initial state, typing A,B,C

leads execution to Final state.

Exercise 2
Define the lemma stating that the only possibility for arriving in the Final

state by typing three letters is to have typed A,B,C.
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Model-checking, to sum-up
Strong and weak points

+ Automatic and e�cient
+ Can find bugs and prove the property
– For finite models only (e.g not on source code!)

+ Can deal with huge finite models (10120 states)
More than the number of atoms in the universe!

+ Can deal with finite abstractions of infinite models e.g. source code
– Incomplete on abstractions (but can find real bugs!)

Some tool names
SPIN, SMV, (bug finders) CBMC, SLAM, ESC-Java, Java path finder, . . .

One killer result
INTEL processors are commonly model-checked
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Assisted proof principles
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Where |ù is the usual logic consequence. This is proven directly on
formulas Mod and Spec. This proof guarantees that...
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Assisted proof principles (II)
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Where D, Mod, Oracle can be infinite.
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Assisted proof, to sum-up

Strong and weak points
+ Can do the proof or find bugs (with counterexample finders)
+ Proofs can be certified
– Needs assistance
– For models/prototypes only (not on source nor on EXE)

+ Proof holds on the source code if it is generated from the prototype

Some tool names
B, Coq, Isabelle/HOL, ACL2, PVS, . . . Why, Frama-C, . . .

One killer result
CompCert certified C compiler

T. Genet (ISTIC/IRISA) ACF-7 18 / 37

Static Analysis principles
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Where abstraction ù is a correct abstraction
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Static Analysis principles (II)
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Where abstraction ù is a correct abstraction
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Static Analysis principles – Abstract Interpretation (III)
The abstraction ’ù’ is based on the abstraction function abs:: D ñ D#

Depending on the verification objective, precision of abs can be adapted

Example 7 (Some abstractions of program variables for D=int)
(1) abs:: int ñ tK, Ju where K ” “undefined” and J ” “any int”
(2) abs:: int ñ tK, Neg, Pos, Zero, NegOrZero, PosOrZero, Ju
(3) abs:: int ñ tKu Y Intervals on Z

Example 8 (Program abstraction with abs (1), (2) and (3))
(1) (2) (3)

x:= y+1; x=K x=K x=K
read(x); x=J x=J x=]-8;+8[

y:= x+10 y=J y=J y=]-8;+8[

u:= 15; u=J u=Pos u=[15;15]

x:= |x| x=J x=PosOrZero x=[0;+8[

u:= x+u; u=J u=Pos u=[15;+8[
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Static Analysis: proving the correctness of the analyzer
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‚ Formalize semantics of Source language, i.e. formalize an eval

‚ Formalize the oracle: BAD predicate on program states
‚ Formalize the abstract domain D

#

‚ Formalize the static analyser SAn:: program ñ bool
‚ Prove correctness of SAn: @ P. SAn(P) ›Ñ ( BAD(eval(P)))
‚ ... Relies on the proof that ù is a correct abstraction
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Static Analysis principle explained in Isabelle/HOL
To abstract int, we define absInt as the abstract domain (D#):

datatype absInt= Neg|Zero|Pos|Undef|Any

Any

Neg Zero Pos

Undef

Remark 1
Have a look at the concretization function (called concrete) defining sets

of integers represented by abstract elements Neg, Zero, etc.

Exercise 3
Define the function absPlus:: absInt ñ absInt ñ absInt (noted `#

)

Exercise 4 (Prove that `# is a correct abstraction of `)
x P concretepxaq ^ y P concretepyaq ›Ñ px ` yq P concretepxa `#

y
aq

T. Genet (ISTIC/IRISA) ACF-7 23 / 37

Static Analysis, to sum-up
Strong and weak points

+ Can prove the property
+ Automatic
+ On the source code
– Not designed to find bugs

Some tool names
Astree (Airbus), Polyspace, Infer (Meta, though unsound and incomplete)

Two killer results
‚ Astree is used to successfully analyze 106 lines of code of the Airbus

A380 flight control system
‚ Millions of lines of Meta’s production code are journally reviewed by

the infer static analyzer
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To sum-up on all presented techniques




 

















‚ Some properties are too complex to be verified using a static analyzer
‚ Testing can only be used to check finite properties
‚ Model-checking deals only with finite models (to be built by hand)
‚ Static analysis is always fully automatic
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To sum-up on all presented techniques




 

















‚ Testing works on EXE, Static analysis on source code, others on
models/prototypes

‚ Model-checking, assisted proof and static analysis have a similar
guarantee level except that assisted proofs can be certified
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A word about models/prototypes
Program verification using “formal methods” relies on:

 

 

 

 

 



This is the case for model-checking and assisted proof.
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Testing prototypes is a common practice in engineering

It is crucial for early detection of problems! Do you know Tacoma bridge?
T. Genet (ISTIC/IRISA) ACF-7 28 / 37



Testing prototypes is an engineering common practice (II)
More and more, prototypes are mathematical/numerical models

If the prototype is accurate: any detected problem is a real problem!

Problem on the prototype ›Ñ Problem on the real system

But in general, we do not have the opposite:

No problem on the prototype �›Ñ No problem on the real system
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Why code exportation is a great plus?
Code exportation produces the program from the model itself!

 

 

 

 

 



Thus, we here have a great bonus: [TP5, TP67, TP89, CompCert]

No problem on the prototype ›Ñ No problem on the real system

If the exported program is not e�cient enough it can, at least, be used as
a reference implementation (an oracle) for testing the optimized one.
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About ”Property Abstraction››››››Ñ Logic formula”
This is the only remaining di�culty, and this step is necessary!

Back to TP0, it is very di�cult for two reasons:
1 The “what to do” is not as simple as it seems

‚ Many tests to write and what exactly to test?
‚ How to be sure that no test was missing?
‚ Lack of a concise and precise way to state the property

Defining the property with a french text is too ambigous!
2 The “how to do” was not that easy

Logic Formula = factorization of tests
‚ guessing 1 formula is harder than guessing 1 test
‚ guessing 1 formula is harder than guessing 10 tests
‚ guessing 1 formula is not harder than guessing 100 tests
‚ guessing 1 formula is faster than writing 100 tests (TP0 in Isabelle)
‚ proving 1 formula is stronger than writing infinitely many tests
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About formal methods and security

You have to use formal methods to secure your software
... because hackers will use them to find new attacks!

Be serious, do hackers read scientific papers?

or use academic stu�?

Yes, they do!
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Hackers do read scientific papers!
Chip and PIN is Broken

Steven J. Murdoch, Saar Drimer, Ross Anderson, Mike Bond
University of Cambridge

Computer Laboratory
Cambridge, UK

http://www.cl.cam.ac.uk/users/{sjm217,sd410,rja14,mkb23}

Abstract—EMV is the dominant protocol used for smart card
payments worldwide, with over 730 million cards in circulation.
Known to bank customers as “Chip and PIN”, it is used in
Europe; it is being introduced in Canada; and there is pressure
from banks to introduce it in the USA too. EMV secures
credit and debit card transactions by authenticating both the
card and the customer presenting it through a combination of
cryptographic authentication codes, digital signatures, and the
entry of a PIN. In this paper we describe and demonstrate a
protocol flaw which allows criminals to use a genuine card
to make a payment without knowing the card’s PIN, and
to remain undetected even when the merchant has an online
connection to the banking network. The fraudster performs a
man-in-the-middle attack to trick the terminal into believing
the PIN verified correctly, while telling the card that no PIN
was entered at all. The paper considers how the flaws arose,
why they remained unknown despite EMV’s wide deployment
for the best part of a decade, and how they might be fixed.
Because we have found and validated a practical attack against
the core functionality of EMV, we conclude that the protocol
is broken. This failure is significant in the field of protocol
design, and also has important public policy implications,
in light of growing reports of fraud on stolen EMV cards.
Frequently, banks deny such fraud victims a refund, asserting
that a card cannot be used without the correct PIN, and
concluding that the customer must be grossly negligent or lying.
Our attack can explain a number of these cases, and exposes
the need for further research to bridge the gap between the
theoretical and practical security of bank payment systems. It
also demonstrates the need for the next version of EMV to be
engineered properly.

Keywords-EMV; Chip and PIN; card fraud; bank security;
protocol failure; security economics; authentication

I. INTRODUCTION

Smart cards have gradually replaced magnetic strip cards
for point-of-sale and ATM transactions in many countries.
The leading system, EMV [1], [2], [3], [4] (named after
Europay, MasterCard, and Visa), has been deployed through-
out most of Europe, and is currently being rolled out in
Canada. As of early 2008, there were over 730 million EMV-
compliant smart cards in circulation worldwide [5]. In EMV,
customers authorize a credit or debit card transaction by
inserting their card and entering a PIN into a point-of-sale
terminal; the PIN is typically verified by the smart card chip,
which is in turn authenticated to the terminal by a digital
certificate. The transaction details are also authenticated by
a cryptographic message authentication code (MAC), using
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Figure 1. Fraud statistics on UK-issued cards [6]

a symmetric key shared between the payment card and the
bank that issued the card to the customer (the issuer).

EMV was heavily promoted under the “Chip and PIN”
brand during its national rollout in the UK. The technology
was advertised as a solution to increasing card fraud: a chip
to prevent card counterfeiting, and a PIN to prevent abuse
of stolen cards. Since its introduction in the UK the fraud
landscape has changed significantly: lost and stolen card
fraud is down, and counterfeit card fraud experienced a two
year lull. But no type of fraud has been eliminated, and the
overall fraud levels have actually risen (see Figure 1). The
likely explanation for this is that EMV has simply moved
fraud, not eliminated it.

One goal of EMV was to externalise the costs of dispute
from the issuing bank, in that if a disputed transaction
has been authorised by a manuscript signature, it would be
charged to the merchant, while if it had been authorised by a
PIN then it would be charged to the customer. The net effect
is that the banking industry, which was responsible for the
design of the system, carries less liability for the fraud. The
industry describes this as a ‘liability shift’.

Security economics teaches us that such arrangements
create “moral hazard,” by insulating banks from the risk
of their poor system design, so it is no surprise when such
plans go awry. Several papers have documented technical
attacks on EMV. However, it is now so deeply entrenched
that changes can be very hard to make. Fundamental pro-
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Figure 2. A complete run of a Chip and PIN protocol.

2) Cardholder verification: The cardholder verification
step starts with a mechanism negotiation, performed between
the card and the terminal, to establish what cardholder
authentication method they can (or must) use. This is driven
by a data element called the cardholder verification method
(CVM) list. The CVM list states the card’s policy on when
to use a PIN, or a signature, or nothing at all, to authenticate
the cardholder.

Protocols for negotiating an authentication mechanism are
notoriously hard to get right. EMV specifies a complex
negotiation algorithm by which the terminal can decide
the appropriate method depending on the value of the
transaction, its type (e.g. cash, purchase), and the terminal’s
capabilities. The CVM list also specifies what action should
be taken if cardholder verification fails, i.e., whether the next
method should be tried or the transaction rejected.

In practice, however, only a small subset of these ca-
pabilities is used. UK cards we have examined specify,
in descending order of preference, PIN verification, sig-
nature verification, and no verification. A terminal may
skip an option of which it is not capable; for example,
unattended terminals cannot do signature verification, and
some vending machines are not equipped with PIN entry
devices/keypads. There may also be scope for operator
discretion. For example, the card may permit the terminal to
attempt signature verification if PIN verification fails, but in
practice merchants will normally reject such a transaction.
In the UK there also exists a type of card known as a “Chip
& Signature” card, which does not support PIN verification

at all. These cards are issued to customers who request them,
normally because they are unable to remember a PIN or are
visually impaired. Some customers also request such cards
because they are concerned about the additional liability that
PIN-based transactions would place on them.

However, the vast majority of transactions are ‘PIN ver-
ified’, which means the customer enters the PIN on a PIN
entry device. The PIN is sent to the card, and the card
compares it to the PIN it stores. If they match, the card
returns 0x9000, and if it fails the card returns 0x63Cx,
where x is the number of further PIN verification attempts
the card will permit before locking up. Note that the card’s
response is not directly authenticated.

ATM cardholder verification works differently, and uses a
method known as “online PIN”, as opposed to “offline PIN”
described above. Here, the PIN is encrypted by the ATM,
and sent to the issuer over a payment network. The issuer
then verifies the PIN centrally, and sends the result back to
the ATM. The attack we present in this paper only applies
to offline PIN cardholder verification.

We have observed variations between countries. While
cards from Belgium and Estonia work like British cards,
we have tested cards from Switzerland and Germany whose
CVM lists specify either chip and signature or online PIN,
at least while used abroad. The attack described here is
not applicable to them. However, because UK point-of-sale
terminals do not support online PIN, a stolen card of such
a type could easily be used in the UK, by forging the
cardholder’s signature.
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I. INTRODUCTION

Smart cards have gradually replaced magnetic strip cards
for point-of-sale and ATM transactions in many countries.
The leading system, EMV [1], [2], [3], [4] (named after
Europay, MasterCard, and Visa), has been deployed through-
out most of Europe, and is currently being rolled out in
Canada. As of early 2008, there were over 730 million EMV-
compliant smart cards in circulation worldwide [5]. In EMV,
customers authorize a credit or debit card transaction by
inserting their card and entering a PIN into a point-of-sale
terminal; the PIN is typically verified by the smart card chip,
which is in turn authenticated to the terminal by a digital
certificate. The transaction details are also authenticated by
a cryptographic message authentication code (MAC), using
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a symmetric key shared between the payment card and the
bank that issued the card to the customer (the issuer).

EMV was heavily promoted under the “Chip and PIN”
brand during its national rollout in the UK. The technology
was advertised as a solution to increasing card fraud: a chip
to prevent card counterfeiting, and a PIN to prevent abuse
of stolen cards. Since its introduction in the UK the fraud
landscape has changed significantly: lost and stolen card
fraud is down, and counterfeit card fraud experienced a two
year lull. But no type of fraud has been eliminated, and the
overall fraud levels have actually risen (see Figure 1). The
likely explanation for this is that EMV has simply moved
fraud, not eliminated it.

One goal of EMV was to externalise the costs of dispute
from the issuing bank, in that if a disputed transaction
has been authorised by a manuscript signature, it would be
charged to the merchant, while if it had been authorised by a
PIN then it would be charged to the customer. The net effect
is that the banking industry, which was responsible for the
design of the system, carries less liability for the fraud. The
industry describes this as a ‘liability shift’.

Security economics teaches us that such arrangements
create “moral hazard,” by insulating banks from the risk
of their poor system design, so it is no surprise when such
plans go awry. Several papers have documented technical
attacks on EMV. However, it is now so deeply entrenched
that changes can be very hard to make. Fundamental pro-
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They revealed a weakness in the payment protocol of EMV
They showed how to make a payment with a card without knowing the PIN
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Figure 4. Components of the attack.

run on a similar device. Miniaturization is mostly a me-
chanical challenge, and well within the expertise of criminal
gangs: such expertise has already been demonstrated in the
miniaturised transaction interceptors that have been used to
sabotage point of sale terminals and skim magnetic strip
data. Miniaturization is not critical, though, as criminals
can target businesses where a card can be used with wires
running up the cashout operative’s sleeve, while a laptop and
FPGA board can be hidden easily in his backpack. There
are firms such as supermarkets and money changers whose
terminals are located on the other side of a barrier from
the checkout staff, who therefore do not scrutinise the cards
their customers use.

V. CAUSES

The failure we identify here might be patched in various
ways which we will discuss later. But at heart there is a pro-
tocol design error in EMV: it compartmentalises the issuer-
specific MAC protocol too distinctly from the negotiation of
the cardholder verification method. Both of the parties who
rely on transaction authentication – the merchant and the
issuing bank – need to have a full and trustworthy view of
the method used to verify the cardholder; and because the
relevant data cannot be collected neatly by either party, the
framework itself is flawed.

A key misconception of the designers was to think of the
TVR and card verification results primarily as separate lists

of possible failures represented by a bit mask, rather than
as a report of the authentication protocol run.

This is not to say that issuing banks cannot in future
implement secure proprietary schemes within the EMV
framework: because the internal protocols are proprietary
anything is possible, and some potential options will be
discussed in Section VI. But such schemes must make
ever more complex and intricate analysis of the transaction
data returned, driving up the complexity and fragility of
the existing EMV card authorization systems. Essentially,
they will have to ignore the framework, and without a
change in the framework itself, the authorization calculations
will remain so complex and dependent on external factors
that further mistakes are very likely. Also, as the protocol
becomes more customized by the issuer, the introduction
of new system-wide features sought for other purposes will
become progressively more difficult and expensive.

The failure of EMV has many other aspects which will
be familiar to security engineers. There was a closed design
process, with no open external review of the architecture
and its supporting protocols. The protocol documentation
appeared eventually in the public domain – nothing imple-
mented by 20,000 banks could have been kept secret – but
too late for the research community to give useful feedback
before a lot of money was spent on implementation.

The economics of security work out not just in the
interaction between banks, customers and merchants – with
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Abstract. This paper describes the forensic analysis of what the authors believe to be the most
sophisticated smart card fraud encountered to date. In 2010, Murdoch et al. [7] described a man-in-
the-middle attack against EMV cards. [7] demonstrated the attack using a general purpose FPGA
board, noting that “miniaturization is mostly a mechanical challenge, and well within the expertise
of criminal gangs”. This indeed happened in 2011, when about 40 sophisticated card forgeries
surfaced in the field.
These forgeries are remarkable in that they embed two chips wired top-to-tail. The first chip is
clipped from a genuine stolen card. The second chip plays the role of the man-in-the-middle and
communicates directly with the point of sale (PoS) terminal. The entire assembly is embedded in
the plastic body of yet another stolen card.
The forensic analysis relied on X-ray chip imaging, side-channel analysis, protocol analysis, and
microscopic optical inspections.

1 Introduction
EMV [2–5] (Europay, MasterCard, Visa) is a global standard, currently managed by the public
corporation EMVCo, specifying interactions between integrated circuit cards and PoS terminals.
The standard also defines exchanges between cards and automatic teller machines (ATMs).
Over the recent years, additional payment operators (such as JCB, AmericanExpress, China
UnionPay and Discover) endorsed EMV. EMV cards rely on pre-existing physical, link, network,
and transport layer protocols such as ISO/IEC 7816 and ISO/IEC 14443.

According to EMVCo’s website, by Q4 2014 a third of card present transactions worldwide
followed the EMV protocol, and 3.423 billion EMV cards were in circulation.

1.1 Brief Overview of an EMV Transaction
A typical EMV transaction breaks down into three phases: (1) card authentication, (2) cardholder
verification and (3) transaction authorization.

During card authentication, the PoS explores the applications supported by the card (e.g.
credit, debit, loyalty, ATM, etc.).

During cardholder verification, the PoS queries the PIN from the user and transmits it to the
card. The card compares the PIN and responds by “yes” (SW code3

0x9000) or “no” (0x63CX4).
Transaction authorization starts by feeding the card with the transaction details T (e.g.

amount, currency, date, terminal ID, fresh randomness, etc.). The card replies with an authoriza-
tion request cryptogram (ARQC) based on T . {ARQC, T} is sent to the issuer5, who replies with
3 Whenever a command is executed by a card, the card returns two status bytes called SW1 and SW2. These bytes

encode a success or a failure cause.
4 X denotes the number of further PIN verifications remaining before lock-up.
5 For our purposes, the issuer can be thought of as the bank.
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an authorization request code (ARC) instructing the PoS how the transaction should proceed.
The issuer also sends to the PoS an authorization response cryptogram (ARPC) which is a MAC
of {ARQC, ARC}. ARPC is transmitted to the card that responds with a transaction certificate
(TC) sent to the issuer to finalize the transaction.

We refer the reader to [7] for a comprehensive diagram illustrating these three phases.

1.2 Murdoch et al.’s Attack

The protocol vulnerability described in [7] is based on the fact that the card does not condition
transaction authorization on successful cardholder verification.

Hence the attack consists in having the genuine card execute the first and last protocol
phases, while leaving the cardholder verification to a man-in-the-middle device.

To demonstrate this scenario’s feasibility, Murdoch et al. produced an FPGA-based proof-of-
concept, noting that miniaturisation remains a mechanical challenge.

1.3 Fraud in the Field

Fig. 1. The judicial seizure. Personal information such as cardholder name are censored for privacy reasons.

In May 2011, the French’s bankers Economic Interest Group (GIE Cartes Bancaires) noted
that a dozen EMV cards, stolen in France a few months before, were being used in Belgium. A
police investigation was thus triggered.
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of criminal gangs”. This indeed happened in 2011, when about 40 sophisticated card forgeries
surfaced in the field.
These forgeries are remarkable in that they embed two chips wired top-to-tail. The first chip is
clipped from a genuine stolen card. The second chip plays the role of the man-in-the-middle and
communicates directly with the point of sale (PoS) terminal. The entire assembly is embedded in
the plastic body of yet another stolen card.
The forensic analysis relied on X-ray chip imaging, side-channel analysis, protocol analysis, and
microscopic optical inspections.

1 Introduction
EMV [2–5] (Europay, MasterCard, Visa) is a global standard, currently managed by the public
corporation EMVCo, specifying interactions between integrated circuit cards and PoS terminals.
The standard also defines exchanges between cards and automatic teller machines (ATMs).
Over the recent years, additional payment operators (such as JCB, AmericanExpress, China
UnionPay and Discover) endorsed EMV. EMV cards rely on pre-existing physical, link, network,
and transport layer protocols such as ISO/IEC 7816 and ISO/IEC 14443.

According to EMVCo’s website, by Q4 2014 a third of card present transactions worldwide
followed the EMV protocol, and 3.423 billion EMV cards were in circulation.

1.1 Brief Overview of an EMV Transaction
A typical EMV transaction breaks down into three phases: (1) card authentication, (2) cardholder
verification and (3) transaction authorization.

During card authentication, the PoS explores the applications supported by the card (e.g.
credit, debit, loyalty, ATM, etc.).

During cardholder verification, the PoS queries the PIN from the user and transmits it to the
card. The card compares the PIN and responds by “yes” (SW code3

0x9000) or “no” (0x63CX4).
Transaction authorization starts by feeding the card with the transaction details T (e.g.

amount, currency, date, terminal ID, fresh randomness, etc.). The card replies with an authoriza-
tion request cryptogram (ARQC) based on T . {ARQC, T} is sent to the issuer5, who replies with
3 Whenever a command is executed by a card, the card returns two status bytes called SW1 and SW2. These bytes

encode a success or a failure cause.
4 X denotes the number of further PIN verifications remaining before lock-up.
5 For our purposes, the issuer can be thought of as the bank.
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Criminals used the attack of Murdoch & al. but not:
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Figure 4. Components of the attack.

run on a similar device. Miniaturization is mostly a me-
chanical challenge, and well within the expertise of criminal
gangs: such expertise has already been demonstrated in the
miniaturised transaction interceptors that have been used to
sabotage point of sale terminals and skim magnetic strip
data. Miniaturization is not critical, though, as criminals
can target businesses where a card can be used with wires
running up the cashout operative’s sleeve, while a laptop and
FPGA board can be hidden easily in his backpack. There
are firms such as supermarkets and money changers whose
terminals are located on the other side of a barrier from
the checkout staff, who therefore do not scrutinise the cards
their customers use.

V. CAUSES

The failure we identify here might be patched in various
ways which we will discuss later. But at heart there is a pro-
tocol design error in EMV: it compartmentalises the issuer-
specific MAC protocol too distinctly from the negotiation of
the cardholder verification method. Both of the parties who
rely on transaction authentication – the merchant and the
issuing bank – need to have a full and trustworthy view of
the method used to verify the cardholder; and because the
relevant data cannot be collected neatly by either party, the
framework itself is flawed.

A key misconception of the designers was to think of the
TVR and card verification results primarily as separate lists

of possible failures represented by a bit mask, rather than
as a report of the authentication protocol run.

This is not to say that issuing banks cannot in future
implement secure proprietary schemes within the EMV
framework: because the internal protocols are proprietary
anything is possible, and some potential options will be
discussed in Section VI. But such schemes must make
ever more complex and intricate analysis of the transaction
data returned, driving up the complexity and fragility of
the existing EMV card authorization systems. Essentially,
they will have to ignore the framework, and without a
change in the framework itself, the authorization calculations
will remain so complex and dependent on external factors
that further mistakes are very likely. Also, as the protocol
becomes more customized by the issuer, the introduction
of new system-wide features sought for other purposes will
become progressively more difficult and expensive.

The failure of EMV has many other aspects which will
be familiar to security engineers. There was a closed design
process, with no open external review of the architecture
and its supporting protocols. The protocol documentation
appeared eventually in the public domain – nothing imple-
mented by 20,000 banks could have been kept secret – but
too late for the research community to give useful feedback
before a lot of money was spent on implementation.

The economics of security work out not just in the
interaction between banks, customers and merchants – with

438

Fig. 7. Forgery X-ray analysis. (5) Stolen card’s module; (6) Connection wires added by the fraudster; (7) Weldings
by the fraudster (only three are pointed out here).

Fig. 8. Forgery structure suggested by Figure 7.
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About formal methods and security

You have to use formal methods to secure your software
... because hackers will use them to find new attacks!

(1 formula) + (counter-example generator) ›Ñ attack!
‚ Fuzzing of implementations using model-checking
‚ Finding bugs (to exploit) using white-box testing
‚ Finding errors in protocols using counter-example gen. (e.g. TP89)

ùñ You will have to formally prove security of your software!
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