
ACF : Analyse et Conception Formelles

Introduction

Thomas Genet

T. Genet (ISTIC/IRISA) ACF 1 / 11

What is going to be taught ?

Using and applying so-called ⌧ formal methods �

• Prototype programs/systems (functional programming)

• Define the expected properties of the programs (logical formulas)
• Use tools to

• prove that the properties are true and, otherwise,
• automatically find counterexamples to the properties

• (Bonus) Export prototypes into the Scala programming language

• (Bonus) Integrate the verified Scala programs into Java applications

T. Genet (ISTIC/IRISA) ACF 2 / 11

Why teaching this ? What are the motivations ?

Why teaching this in Master 1 of computer science ?

• ACO=programming in the large

• ACF=programming in the small

• Because finding the right solution to a problem at the first attempt is
almost impossible (TP0) :

• We should be able to rapidly prototype a solution
• We should be able to rapidly detect bad solutions
• We should be able to know why the solution is bad (counterexamples)
• We should have guarantees on the solution when no counterexample is

found (proof)

• Because it is commonly used in high-technology software industry

• Because it is mature to become popular

T. Genet (ISTIC/IRISA) ACF 3 / 11

Who claims that teaching formal methods is important ?

• All the world leading universities in computer science :
(MIT, Stanford, Berkeley, Rice, . . ., Oxford, Cambridge, ETH
ZÃ¼rich, EPFL, TUM MÃ¼nchen, . . .)

• High-tech critical software industry :
(Amazon, Microsoft, NASA, Intel, Meta, Airbus, Gemalto, . . .)
(In Rennes : DGA, ANSSI, Orange, Mitsubishi, Technicolor, . . .)

• All your Master teachers
• Me !

• 20 years of research on formal verification :
• developing verification tools

• modelization and verification of industrial systems

• Experience of industrial use of formal methods :
• Orange

• Technicolor

T. Genet (ISTIC/IRISA) ACF 4 / 11



Some companies using formal methods
• Transportation

• line 14 of Paris subway (RATP)

• primary flight control software of A340 and A380 (Airbus)

• AILS (Airbone Information for Lateral Spacing) (NASA)

• Army : military secured communication software (DGA)

• Security for Communications/Trading/Banks
• online payment protocols (Orange)

• cloud computing (Amazon Web Services)

• Consumer software
• static analysis of front-end and back-end code (Meta)

• processors (Intel)

• Windows drivers, secured web protocols (Microsoft)

• Smartcards, Javacards (Gemalto, Fime)

• home networks, secured movie editing devices (Technicolor)

T. Genet (ISTIC/IRISA) ACF 5 / 11

Objectives of ACF

• (Re)-introduce functional programming
• Good and fast prototyping/modeling language
• Renewed programming paradigm (Ocaml, Haskell, F#, Scala)
• Proofs are far easier on a functional program than on an imperative

one (e.g. Why3 in ProgC)

• Use logic to formally define the properties of a software
• ⌧ The most precise, concise and expressive programming language �

• Proving one formula can replace infinitely many tests !
• Testing one formula can replace thousands of tests !

T. Genet (ISTIC/IRISA) ACF 6 / 11

How does ACF relates to other M1/L3 courses ?

• ACO (M1)
• ACF is only about programming in the small
• ACF focuses on the validity of a solution/program

• LOG (L3)
• Same core logical language as LOG, extended in ACF
• ACF does not focus on proofs
• Automation of many aspects of LOG

• ProgC (L3)
• Functional programming instead of imperative (Why)
• More complex programs in ACF
• . . . and more complex properties that you can prove !
• Integration of verified code in Java project

T. Genet (ISTIC/IRISA) ACF 7 / 11

Evaluation

• Terminal exam (1/2 of the final mark)

• 3 projects (1/2 of the final mark)
• Model/prototype a software using functional programming
• Define the expected properties of the software using logic
• Check that the software satisfies the properties
• Export a Scala program corresponding to the model
• Integrate it into a Java program

T. Genet (ISTIC/IRISA) ACF 8 / 11



Practical work (demo)

• Model/prototype a program (demo.thy + solTP0.thy)

• Formally define its property using logic formula

• Search for counterexamples

• Prove the property

• Export an executable version in Scala

• Integrate into a Java program (CM1 project + TP0Isabelle)

Tools to be used (all freely available) :

• Isabelle/HOL (2023)

• Scala 2.13 with SBT (Scala Build Tool)

• IntelliJ bundle/Visual Studio/YourFavoriteEditor

Instructions : http://people.irisa.fr/Thomas.Genet/ACF/#tools

T. Genet (ISTIC/IRISA) ACF 9 / 11

Lessons and practical classes (expected) schedule

7 lessons :

8
>>>>>>>>>><

>>>>>>>>>>:

1 Propositional and first order logics

2 Terms, functions and types

3 Recursive functions

4 Interactive proof basics

5 Scala

6 Specification and verification methodology

7 Principles of verification techniques

12 practical
classes

8
>>>>>>>>>><

>>>>>>>>>>:

0 ... done

1 Propositional and first order logic

2 and 3 Logic, recursive functions, interactive proof

4 Scala, evaluators and random testing

5 Project 1 : Equivalence of security policies

6 and 7 Project 2 : Certified static analyzer

8 and 9 Project 3 : Price negotiation (web) applet

T. Genet (ISTIC/IRISA) ACF 10 / 11

What about ⌧ Travaux dirigés � ?

No classical ⌧ Travaux dirigés � (TD) !

• ACF has only lessons and practical classes !

• You have to ask questions during the lessons (CM/TP)

• You have to ask Isabelle/HOL many questions and at any time

• You have to ask questions on ACF’s Moodle

• You have to read Isabelle/HOL and Scala documentation

You can ask questions during ⌧ open � TDs :

• Send questions on Moodle’s forum

• If some questions need more interaction, I schedule a TD slot

• When all questions have been answered, the TD is over

T. Genet (ISTIC/IRISA) ACF 11 / 11


