AVISFPFA

WWW.avispa-project.org

IST-2001-39252

Automated Validation of Internet Security Protocols and Applications

AVISPA v1.0 User Manual

AVISPA Team

Document Version: 1.0
March 31, 2006

-_—y
“‘l‘f o | Project funded by the European Community under the

]nﬁ-’fmin” sﬂ“iﬂ}' Information Society Technologies Programme (1998-2002)
lechnologies



CONTENTS 2
Contents

1 Introduction 6

1.1 Imstallation Procedure . . . . . . . . . . .. ..o 6

1.2 How to use the AVISPA tool? . . . . . . . . . .. ... .. .. .. 7

1.3 About this Manual . . . . . . . ... . 8

1.4 Contact . . . . . . . 8

2 User Section 9
2.1 Specifying Protocols: HLPSL . . . . . . . . . . ... ... ...

2.1.1 HLPSL Syntax . . . . . . . . .. 9

a. Lexical entities. . . . . . . ... Lo 10

b. Structure of a HLPSL specification. . . . . .. ... ... ... ..... 10

c. Definition of roles. . . . . . . ... oo 11

d. Definition of arole. . . . . . . . ..o 11

e. Declarations inroles. . . . . . . . ... L 12

f- Declaration of local variables. . . . . . . . ... ... ... ... ..... 12

g. Declaration of owned variables. . . . . . . . . ... ... 13

h. Declaration of constants. . . . . . . . .. ... ... ... 13

i. Initialisation of local variables. . . . . . . . ... ... .. ... ... .. 13

j. Declaration of the acceptance state.. . . . . . ... ... ... ... ... 13

k. Declaration of intruder knowledge. . . . . . . . . . ... ... ... ... 14

[. Transitions in basic roles. . . . . . . . . . . ... L oL 14

m. Actions and reactions. . . . .. . ... 15

n. Composition of roles. . . . . . . ... L 16

o. Instantiation of arole. . . . . . . . ..o oL oL 17

p. Declaration of goals. . . . . . . . . ... oo 17

q. Declaration of types of variables. . . . . . . .. .. ... ... .. 19

r. Declaration of types of constants. . . . . . . . .. ... ... ... ... 20

s. Types and compound types. . . . . . . . . . ... L 20

t. Stutter and non-stutter formulas. . . . . . . ... 21

AVISPA v1.0

User Manual



CONTENTS 3

u. Stutter and non stutter expressions. . . . . . . . ... ... L. 22

v. Predefined equational theories. . . . . . . . . ... ... ... ...... 24

2.1.2  HLPSL Guidelines . . . . . .. .. . . 24

a. Variable/constant names. . . . . ... ..o 25

b. Arithmetic. . . . . . . . .. 25

c. Old/new values of variables. . . . . . . ... ... ... ... ....... 25

d. Channels. . . . . . . .. . 25

e. Goal specification. . . . . . . ... 25
foTransitions. . . . . .. .o 27

g. Initial value. . . . . .. .o 27

h. Constants. . . . . . . . . 28

2. Messages. . . ..o 28

g. Knowledge. . . . . . . . . 29

k. Sessions generation. . . . . . . . ... ..o 29

2.1.3 Example . . . . .. 30

2.2 Analyzing a HLPSL Specification . . . . . . . . ... ... ... ... ... ... 34
2.2.1 Running avispa . . . . .. ... e 34
2.2.2 Generated Errors . . . . ... 36
2.2.3 Interpreting the Output . . . . . . . . . ... ... . 36
224 Example . . . ..o 36

3 Advanced User Section 39
3.1 Generating an IF Specification . . . . . . . . . ... 0L 39
3.1.1  Automatic Translation from HLPSL to IF . . . ... ... ... ... ... 39
3.1.2  The IF Specification Language . . . . . . . .. ... ... .. ... .. ... 40

a. Lexical entities. . . . . . . ..o 40

b. Prelude and IF files. . . . . . . . . . .. . 40

c. Section for type symbols. . . . . ..o 41

d. Section for signature. . . . . ... ..o 41

e. Section for variables and constants declaration. . . . . . . .. ... ... 42

AVISPA v1.0 User Manual



CONTENTS 4
f- Section for equations. . . . .. ... 43

g. Section for initialisation. . . . . . . .. ..o 43

h. Section for transition rules. . . . . . . ... ... L. 44

1. Section for properties. . . . . . ... 45

J. Section for attack states. . . . . .. ... oL 45

k. Section for intruder behaviour. . . . . . . ... 00000 46

3.1.3 IF Prelude File . . . . . . . . . o 46

3.1.4 Example . . . ..o 49

3.2 Analysing a IF Specification . . . . . . . .. ... 54
3.2.1 Using CL-AtSe . . . . . . . . e 54

3.2.2 Using OFMC . . . . . . . . o 58

3.2.3 Using SATMC . . . . . . . . o e 59

3.24 Using TAASP . . . . . . . 60

TA4SP Options . . . . . . . . . 61

TA4SP Outputs . . . . . . . . o 61

3.3 The Standard Output Format . . . . . . . . .. .. .. ... ... ... ...... 63

A XEmacs mode 67
A1 Installation . . . . .. . L 67
A2 Usage . . . . e 67
A2.1 First steps... . . . . . oL 67

A.2.2 The Avispa Menu . . . . . . . . . . .. 68

A2.3 Theoptions . . . . . . . . . . . e 68

A24 Navigation . . . . . . .. . 69

A3 Customization . . . . . . . . .. 69
A.3.1 The avispa-project group . . . . . . . . ... 70

A.3.2 The avispa-tools group . . . . . . . ... 70

B HLPSL Semantics 72
B.1 Preliminaries . . . . . . . . . . . e 72
B.1.1 The Transition System. . . . . . . . . . . . .. 72

AVISPA v1.0

User Manual



CONTENTS 5

B.1.2 Events and Actions. . . . . . . . ... 72

B.1.3 Transitions. . . . . . . . ... 73

B.1.4 Communication, Channels, and Signals. . . . . . . .. ... ... ... ... 73

B.2 Formal Semantics . . . . . . . . .. 74
B.2.1 Messages. . . . . .. e 74

B.2.2 HLPSL Roles. . . . . . . . . . 74

B.2.3 Intruder Model. . . . . . . . . ..o 7

B.2.4 Freshness. . . . . . . .. 79

B.25 Goals. . . . . . 79

C IF Semantics 81
References 85

AVISPA v1.0 User Manual



1 Introduction

AVISPA (Automated Validation of Internet Security Protocols and Applications) is a push-button
tool for the automated validation of Internet security-sensitive protocols and applications. It pro-
vides a modular and expressive formal language for specifying protocols and their security prop-
erties, and integrates different back-ends that implement a variety of state-of-the-art automatic
analysis techniques.

The AVISPA tool has been realized thanks to the AVISPA shared cost RTD (FET open)
project IST-2001-39252, by the Artificial Intelligence Laboratory at DIST (University of Genova,
Genova, Italy), the CASSIS group at INRIA Lorraine (LORIA, Nancy, France), the Information
Security group at ETHZ (Ziirich, Switzerland), and Siemens AG (Munich, Germany).

For more information on this project and on the AVISPA Team, please consult

http://www.avispa-project.org/

or subscribe to the avispa-users@avispa-project.org mailing list by sending an empty e-mail
to:

avispa-users-join@avispa-project.org.

1.1 Installation Procedure

The AVISPA tool is distributed with a copyright. Please take a look at the LICENSE file provided
with the tool before proceeding with the installation.

This software is being developed as a research tool. We continue to make significant changes
to it. This is an ”alpha” release which we are doing primarily in order to get feedback. We are
willing to know what you think of AVISPA, so please send comments to us at avispa-users@
avispa-project.org.

In order to install AVISPA vX.Y, you need to extract the archive avispa-package-X.Y_
Linux-1i686.tgz in the desired directory, which will create a new sub-directory named avispa_1.
0 populated by a number of files and sub-directories. Then you need to set the environment
variable AVISPA PACKAGE to refer to the absolute path ending in avispa-X.Y, and to put the
script called avispa in the execution path of your shell.

For example, if you want to install the AVISPA tool in a directory /opt, in a bash shell
environment, the commands are:

cd /opt

AVISPA v1.0 User Manual


http://www.avispa-project.org/
avispa-users@avispa-project.org
avispa-users-join@avispa-project.org
avispa-users@avispa-project.org
avispa-users@avispa-project.org
avispa-package-X.Y_Linux-i686.tgz
avispa-package-X.Y_Linux-i686.tgz
avispa_1.0
avispa_1.0
AVISPA_PACKAGE
avispa-X.Y
avispa

1 INTRODUCTION 7

tar -xzf /home/xyz/avispa-package-X.Y_Linux-i686.tgz
export AVISPA_PACKAGE=/opt/avispa-X.Y
export PATH=$PATH:$AVISPA_PACKAGE

Now you should be able to execute AVISPA, using the command avispa. Please see the README
file for information about the command line options of AVISPA.

The AVISPA package provides a user-friendly mode for XFEmacs to allow a simple interaction
between the user and the modules of the AVISPA package. To set-up the XEmacs mode follow
the instructions below:

cd $AVISPA_PACKAGE/others
tar -xzf avispa-mode.tgz

This command will create a directory temporary-avispa containing a makefile for installing the
XEmacs mode. Follow the instruction in temporary-avispa/help.txt; when done, delete the
temporary directory temporary-avispa.

The AVISPA package further provides the hlpsldoc tools for documenting HLPSL specifica-
tions in I¥TEXand HTML format. To set them up, follow the instructions below:

cd $AVISPA_PACKAGE/others/hlpsldoc
tar xzf hlpsldoc.tgz

Then follow the instructions in the local INSTALL file.
Usage of the hlpsldoc tools is explained in the local README file.

The current distribution has been tested on several Linux platforms (please refer to the global
README file), but if you encounter any difficulty in installing and running AVISPA on your machine,
please send us a message to avispa-users@avispa-project.org.

1.2 How to use the AVISPA tool?

The typical interaction with the AVISPA tool is as follows:

1. You start by specifying the protocol in HLPSL, the AVISPA specification language, includ-
ing the properties that you want to check, then

2. you invoke AVISPA by issuing the avispa command at the prompt and by specifying which
analyser (back-end) you want to use,

AVISPA v1.0 User Manual


avispa-users@avispa-project.org
avispa

1.3 About this Manual 8

3. you look at the output and maybe shout “Yeahhhhh!” if you will see that the AVISPA tool
has declared that your protocol is safe (maybe under some conditions), or “Ups!” when you
will see that an attack has been found. In the latter event you may decide to modify your
protocol specification and interaction continues at step 2.

Note that you can use the HLPSL XEmacs mode provided in the AVISPA package; its syntax
highlighting and menus are very practical for writing a protocol specification and verifying it
automatically.

1.3 About this Manual
This manual is divided in two part.

e For non expert users, the User Section describes the syntax of the specification language
(HLPSL), and the different steps for analysing a HLPSL specification and interpreting the
output.

e For expert users, the Advanced User Section describes how to use all the power of the
AVISPA tool; it presents the translator of HLPSL specifications into IF (Intermediate For-
mat) specifications; then it shows how to use each back-end; it also gives the common syntax
of the output of the back-ends.

In the appendix, the XEmacs mode is described, and the semantics of the HLPSL and IF speci-
fication languages are detailed.

1.4 Contact

For contacting the AVISPA Team, either for questions, or for proposing improvements, or for bug
reports, please do not hesitate to use the following mailing list:
avispa-users@avispa-project.org
You need to subscribe to the above list, either by sending an empty e-mail to
avispa-users—-join@avispa-project.org,
or by following the link below:
http://www.avispa-project.org/mailman/listinfo/avispa-users
All registered AVISPA tool users will also receive your message.

AVISPA v1.0 User Manual


avispa-users@avispa-project.org
avispa-users-join@avispa-project.org
http://www.avispa-project.org/mailman/listinfo/avispa-users

2 USER SECTION 9

2 User Section

This section describes the easiest way to use the AVISPA tool: to specify protocols in HLPSL,
then to run the avispa script for analysing it.

[ High-Level Protocol Specification Language (HLPSL) }
[

Y
Translator
HLPSL2IF

l

[ Intermediate Format (IF) ]

‘ avispa script file

On—the—fly CL-based SAT-based Tree Automata—based
Model-Checker Attack Searcher Model—-Checker Protocol Analyser
TAA4SP

AtSe SATMC

[ Output Format (OF) ]

Figure 1: Architecture of the AVISPA tool v.1.0

2.1 Specifying Protocols: HLPSL

Protocols to be studied by the AVISPA tool have to be specified in HLPSL (standing for High
Level Protocols Specification Language), and written in a file with extension hlpsl.

This language is based on roles: basic roles for representing each participant role, and composition
roles for representing scenarios of basic roles. Each role is independent from the others, getting
some initial information by parameters, communicating with the other roles by channels.

In this section, we present the syntax of HLPSL and some guidelines for HLPSL beginners.

2.1.1 HLPSL Syntax The syntax of HLPSL is detailed in the following, using the standard
BNF.

Before describing the syntax, we list the lexical entities used in the grammar, keywords and
expressions being written as strings (i.e. arbitrary sequences of characters enclosed by two "
characters).

AVISPA v1.0 User Manual


"

2.1 Specifying Protocols: HLPSL 10

a. Lexical entities. In HLPSL, all variables start with a capital letter, and constants start with
a small letter; note that natural numbers can also be used as constants (without any specific
interpretation).

var_ident: [A-Z] [A-Za-z0-9_]x*
const_ident: [a-z] [A-Za-z0-9_]x
nat_ident: [0-9]+

The list of HLPSL keywords is the following:

accept, agent, authentication_on, bool, channel, composition, cons,
const, def=, delete, dy, end, exp, goal, hash, hash_func, iknows,
in, init, intruder_knowledge, inv, local, message, nat, new, not,
ota, owns, played_by, protocol_id, public_key, request, role,
secrecy_of, secret, set, start, symmetric_key, text, transition,
weak_authentication_on, witness, wrequest, xor.

Some other constant names are reserved and will be automatically renamed if used in a specifi-
cation:

apply, attack_state, attack_states, contains, crypt, dummy_agent,
dummy_bool, dummy_chnl, dummy_chnl_dy, dummy_chnl_ota, dummy_hash,
dummy_msg, dummy_nat, dummy_nonce, dummy_pk, dummy_set, dummy_sk,
equal, equations, initial_state, inits, intruder, leq, pair,
properties, property, rules, scrypt, section, step, types.

In a HLPSL specification comments and separators (e.g. “white space”, new line and tabulation
characters) are ignored:

comments: %[~\n]*
spaces: [\n\r\t ]

b. Structure of a HLPSL specification. A HLPSL specification is composed of three parts: a list
of definitions of roles, a list of declarations of goals (if any), and the instantiation (read call) of
the main role (usually without arguments).

SpecHLPSL ::=
Role_definition+
Goal_declaration?
% Call of the main role: (ex: environment() )
Role_instantiation

AVISPA v1.0 User Manual



2 USER SECTION 11

c. Definition of roles. The roles in a specification are of two kinds: basic roles played by agents,
and composition roles describing the scenario to consider during analysis (for example, describing
what is a session of the protocol, or what instances of sessions should be used).

% Roles may be either basic or compositional:
Role_definition ::=

Basic_role
| Composition_role

d. Definition of a role. Roles are independent processes: they have a name, receive information
by parameters and contain local declarations.

Basic roles are played by an agent whose name is received as parameter. The actions of a basic
role are transitions, describing changes in their state depending on events or facts.

% Basic roles must include a player definition and generally
% contain a transition declaration section.
Basic_role ::=

I|role n

Role_header

Player

Role_declarations

Transition_declaration

I|end|l |lrolel|

% Used to bind the role and the identifier of the agent playing the role.
Player ::=
"played_by" var_ident

Note that all the information of a basic role (parameters and local variables) represents the
knowledge of the player of the role.

A composition role combines other roles, either in parallel, or in sequence.

% Composition roles have no transition section, but rather
% a composition section in which they call other roles.
Composition_role ::=

I|]:.01e n

Role_header

Role_declarations

Composition_declaration

I|endll Ilroleﬂ

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 12

e. Declarations in roles. The first element in a role is its header. It contains the role name (a
constant) and its parameters (a list of declarations of variables with their type).

Role_header ::=
const_ident "(" Formal_arguments? ")"

Formal_arguments ::=
(Variable_declaration ",")* Variable_declaration

A role may contain numerous declarations:

e local declarations: declarations of variables with their type;

e constants declarations: declaring constants with their type is not local to the role; any
constant in one role can be used in another one;

e initialisations: initialisation of local variables;
e accept declarations: conditions for which the role can be considered as done;

e intruder knowledge declaration: a set of information that is given to the intruder at the
beginning of the role execution.

Role_declarations ::

"def="
Local_declaration?
Owns_declaration? % not handled yet

Const_declaration?

Init_declaration?

Accept_declaration? % not handled yet
IKnowledge_declaration?

f. Declaration of local variables. Declarations of different types are separated by a comma.

% Declaration of local variables.
Local_declaration ::=
"local" Variables_declaration_list

Variables_declaration_list ::=
(Variable_declaration ",")* Variable_declaration

Note that, even if variables are local to roles, the same variable declared in different roles has to
have the same type (for avoiding automatic renaming that could bother the understanding of the
result by the user).

AVISPA v1.0 User Manual



2 USER SECTION 13

g. Declaration of owned variables. Roles may declare ownership of variables.

% Declaration of owned variables.
Owns_declaration ::=
"owns" Variables_list

Owned variables may change in only the way described by the owning role, even if they are visible
from outside.

However, since shared variables are not fully handled in the current version of the AVISPA tool,
"owns” declarations are useless.

h. Declaration of constants. Constants are declared in roles, but are global. Multiple declarations
of a constant do not raise an error, provided the type is the same.

Const_declaration ::=
"const" Constants_declaration_list

Constants_declaration_list ::=
(Constant_declaration ",")* Constant_declaration

i. Initialisation of local variables. The initialisation section is a conjunction of simple assignments
to variables and of constant predicates. Expressions used for assignments and in the predicates
have to used initialised variables; this is the meaning of a stutter expression.

Init_declaration ::=
"init" Init_declarations

Init_declarations ::=
(Init_declaration "/\")* Init_declaration

Init_declaration ::=
var_ident ":=" Stutter_expression
| const_ident "(" Stutter_expressions_list? ")"

Let us give a simple example of initialisation:
init State := 0 /\ SetKeys := {} /\ iknows(K)

j. Declaration of the acceptance state. Acceptance is used for sequential composition to mark the
stop states after which the following instantiation may begin.

Accept_declaration ::=
"accept" Predicates

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 14

However, since sequential composition is not fully handled in the current version of the AVISPA
tool, "accept” declarations are useless.

k. Declaration of intruder knowledge. The knowledge given to the intruder is defined by a list of
constants, assigned variables (either parameters or initialised local variables) or messages build
with constants and assigned variables.

IKnowledge_declaration ::=
"intruder_knowledge" "=" "{" Stutter_expressions_list? "}"

This knowledge is given to the intruder in a role, but the full knowledge of the intruder is the
union of all the knowledge given to him in all instances of basic and composition roles.

I. Transitions in basic roles. The transitions in a basic role are either spontaneous actions, enabled
when the state predicates on the left-hand side are true, or immediate reactions fired immediately
whenever the non-stutter events (that is events based on the change of some variables values) on
the left-hand side are true.

Transition_declaration ::=
"transition" Transitionx

Transition ::=

Label "." Predicates "--|>" Actions J spontaneous action
| Label "." Events "=|>" Reactions % immediate reaction
Label ::=

const_ident
| nat_ident

Note that each transition starts with a label (a constant or a natural number followed by a dot).

The condition for applying a spontaneous action is a conjunction of predicates, representing a
state of the role (all the information in those predicates is already known).

Predicates ::=
(Predicate "/\")* Predicate

Predicate ::=

Stutter_formula
| const_ident " (" Stutter_expressions_list? ")"
| var_ident "(" Stutter_expression ")"

AVISPA v1.0 User Manual



2 USER SECTION 15

A predicate of the last form has to correspond to the reception of a message in a channel (for
example: Rev({M’}_K)).

Contrarily to spontaneous actions, immediate reactions happen when the player of the role is in
a given state and has to react to some events (a reception of a message, for example) that will
change the value of some variables.

Events ::=
((Predicate|Event) "/\")* Event ("/\" (Predicatel|Event))x*

Event ::=
Non_stutter_formula
| const_ident "(" Non_stutter_expressions_list? ")"
| var_ident " (" Non_stutter_expression ")"
| var_ident "(" "start" ")" % Dummy start message for Dolev-Yao models

The start message is used as a signal sent to the player of the role, for asking him to start a
session of the protocol. In the last two cases, the variable has to be a channel.

m. Actions and reactions. Actions and reactions are syntactically similar; they differ only by the
context in which they are used.

An action can be the assignment of a variable, possibly with a fresh value (e.g.: Na’:=new()), the
call of a user-defined predicate (such as sending a message in a channel), or the call of predefined
goal predicates. The expression assigned to a variable can be either a stutter one, or a non-stutter
one.

In any transition, the old value and the new value of a variable are syntactically distinguished:
the prime symbol () has to be attached to the name of a variable for considering its new value.
Examples: M’ :={M}_K and Snd (M’ .M).

Reactions ::
Actions

Actions ::=
(Action "/\")* Action

Action ::=
var_ident "’" ":=" Expression
| var_ident "’" ":=" "pew" "(" ")

| const_ident " (" Expressions_list? ")"
| var_ident " (" Expression ")"

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 16

| "secret" "(" Expression "," const_ident "," Expression ")"

| "witness" " (" Expression "," Expression "," const_ident "," Expression ")"
| "request" "(" Expression "," Expression "," const_ident "," Expression ")"
| "wrequest" "(" Expression "," Expression "," const_ident "," Expression ")"

The goal predicates contain the following information:

e secret(E,id,S): declares the information E as secret shared by the agents of set S; this
secret will be identified by the constant id in the goal section;

e witness(A,B,id,E): for a (weak) authentication property of A by B on E, declares that
agent A is witness for the information E; this goal will be identified by the constant id in
the goal section;

e request(B,A,id,E): for a strong authentication property of A by B on E, declares that
agent B requests a check of the value E; this goal will be identified by the constant id in the
goal section;

e wrequest(B,A,id,E): similar to request, but for a weak authentication property.

n. Composition of roles. Roles, basic and/or composition, can be composed in parallel or sequen-
tially. Such scenarios are described in the composition section of so called composition roles.*

% Definition of the composition section (for composed roles)
Composition_declaration ::=

"composition" Compositions_list?

Compositions_list ::=

Composition
| Composition "/\" Bracketed_par_compositions_list ¥ parallel
| Composition ";" Bracketed_seq_compositions_list 7 sequential

| "(" Compositions_list ")"

Composition ::=
[ "/\" "_" "{" Parameters_instance "}" Bracketed_compositions_list
| Role_instantiation

Parameters_instance ::=
"in" "(" Concatenated_variables_list "," Stutter_expression ")"

I'Note that in the current version of the AVISPA tool, sequential composition of roles is not handled yet.

AVISPA v1.0 User Manual



2 USER SECTION 17

Concatenated_variables_list ::=
Concatenated_variables
| "(" Concatenated_variables ")"

Concatenated_variables ::=
(var_ident ".")* var_ident

Bracketed_par_compositions_list ::=

Composition
| Composition "/\" Bracketed_par_compositions_list
| "(" Compositions_list ")"

Bracketed_seq_compositions_list ::=

Composition
| Composition ";" Bracketed_seq_compositions_list
| "(" Compositions_list ")"

Bracketed_compositions_list ::=
Composition
| "(" Compositions_list ")"

An example of composition of roles is:

server(S,Ks) /\

/\_{in(A.B.Ka.Kb,Instances)} (alice(A,Ka) /\ bob(B,Kb))
Note that in this case, Instances has to be a set whose elements are of the compound type
agent.agent.public_key.public_key, provided A and B are variables of type agent, and Ka
and Kb are variables of type public key. For example, {a.b.ka.kb, a.i.ka.ki} could be the
value of Instances.

o. Instantiation of a role. To create an instantiation of a role is like calling a procedure, giving
values to each argument. Of course, the number of arguments has to be the same as the number
of formal parameters, and the type of each argument has to be compatible with the type of the
corresponding formal parameter.

Role_instantiation ::=
const_ident " (" Expressions_list? ")"

p. Declaration of goals. Goals are declared in a specific section. Such declarations are done either
by using predefined macros, or by using a LTL formula?.

2LTL formulas are handled by the translator, but in the current version of the AVISPA tool, no backend does
use them.

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 18

The available macros correspond to:

e the secrecy of some information,
e the strong authentication of agents on some information,

e the weak authentication of agents on some information.

Each goal is identified by a constant, referring to predefined predicates (secret, witness, request
and wrequest) added in transitions by the user. For more details on those predicates, see the
description of actions, page 15.

Goal_declaration ::=
"goal" Goal_formula+ "end" "goal"

Goal_formula ::=
"secrecy_of" Constants_list
| "authentication_on" Constants_list
| "weak_authentication_on" Constants_list
| "[]" LTL_unary_formula

LTL _unary_formula ::=
LTL_unary_predicate

| "<->" LTL_unary_formula

| "(-)" LTL_unary_formula

| "[-]" LTL_unary_formula

| "~" LTL_unary_formula

| "(" LTL_formula ")"

LTL_formula ::=

LTL_predicate
| "<->" LTL_unary_formula
| "(-)" LTL_unary_formula
| "[-]" LTL_unary_formula
| LTL_formula "/\" LTL_formula
| LTL_formula "\/" LTL_formula
| LTL_formula "=>" LTL_formula
| "~" LTL_unary_formula
| "(" LTL_formula ")"

LTL_unary_predicate ::

AVISPA v1.0 User Manual



2 USER SECTION 19

const_ident "(" Stutter_expressions_list? ")"
| "in" "(" Stutter_expression "," Variable_or_constant ")"

LTL_predicate ::=

LTL_unary_predicate
| Stutter_expression "=" Stutter_expression
| Stutter_expression "<=" Stutter_expression
| Stutter_expression "/=" Stutter_expression

In the temporal formula, ”<->" means “sometimes in the past”,” (-=)” means “one time instant in
the past”, ” [-]” means “globally in the past”. The other symbols are standard logical connectives:
conjunction (/\), disjunction (\/), implication (=>) and negation(~).

Note that LTL formulas always start by ” [1”7, the “always” temporal operator.

An example of goal section is the following:

goal

authentication_on nb

weak_authentication_on na

secrecy_of na, nb

[J (<-> has_seen(A,B,M) => ((has_seen(B,A,M) /\ “iknows(M)) \/ B=i))
end goal

Note that the last LTL formula is just an example, without any serious meaning. It is given only
to show that user-defined predicates (such as has_seen) can be used, so as iknows for representing
intruder’s knowledge.

q. Declaration of types of variables. All variables must be declared, with the most specific type
possible (or at least with the generic type message).

Variable_declaration ::=
Variables_list ":" Type_of

Variables_list ::=
(var_ident ",")* var_ident

Type_of ::=
(Subtype_of "->")* Subtype_of

Subtype_of ::=
Simple_type

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 20

| n(n Subtype_of u)u
| Compound_type

Note that a variable can be of type function, using ”->” for separating the types of the arguments
and the type of the result.
More generally, types are either simple or compound.

r. Declaration of types of constants. To declare constants is similar to declaring variables, except
that the type of a constant cannot be compound.

Constant_declaration ::=
Constants_list ":" Simple_type_of

Constants_list ::
(const_ident ",")* const_ident

Simple_type_of
(Simple_subtype_of "->")* Simple_subtype_of

Simple_subtype_of
Simple_type
| "(" Simple_type_of ")"

s. Types and compound types. The types proposed are the standard ones (agent, key, text, chan-
nel), and also more advanced ones, like hash functions and enumerations. Types nat and bool do
not have any predefined semantics. The generic type, compatible with all the others, is message.
Variables representing channels® have an additional attribute indicating the level of protection:
dy for no protection; ota for forbidding divert actions of the intruder.

Simple_type ::=
"agent"
"channel"
"Channel" u(u udyu n)n
"channel" n(u "ota" n)n

|
|
|
|
| "symmetric_key"
|
|
|

"public_key"

"text" %» used for nonces
"message" % generic type
"protocol_id" % kind of label

3In the current version of the AVISPA tool, only Dolev-Yao channels are supported.

AVISPA v1.0 User Manual



2 USER SECTION 21

| "nat"
| "bOOl"

| "hash_func"

| "{" Constants_or_nat_list "}" Y% enumeration

Constants_or_nat_list ::=
const_ident

| nat_ident
| const_ident "," Constants_or_nat_list
| nat_ident "," Constants_or_nat_list

HLPSL also allows for the specification of compound types. Compound types allow the protocol
designer to declare HLPSL variables of sorts restricted and specialised in a particular way, and
permit to provide a detailed description of the contents of a variable, using concatenation, sets,
encryption, inverse of keys and result of the application of a hash function.

Compound_type ::=

Subtype_of "." Subtype_of
Subtype_of "set"
"{" Subtype_of "}" "_" Bracketed_subtype_of

I

|

| "inv" u(n Subtype_of n)u
| "hash" n(u Subtype_of n)u

Bracketed_subtype_of
Simple_type

| "inv" u(n Subtype_of u)u

| n(n Subtype_of u)u

t. Stutter and non-stutter formulas. A stutter formula is a formula that does not use the new
value of a variable; such formulas can be comparisons, set membership tests.

Stutter_formula ::=
Stutter_expression "=" Stutter_expression

| Stutter_expression "<=" Stutter_expression
% Inclusion test: in(Elt,Set)

| "in" "(" Stutter_expression "," Stutter_expression ")"

| "in" "(" Non_stutter_expression "," Stutter_expression ")"
% Syntactic sugar for inequality:

| Stutter_expression "/=" Stutter_expression

| "not" "(" Stutter_formula ")"

| "(" Stutter_formula ")"

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 22

A non-stutter formula uses the new value of at least one variable, represented by “priming” the
variable (example: Na’).

Non_stutter_formula ::=

Non_stutter_expression "=" Stutter_expression
Stutter_expression "=" Non_stutter_expression
Non_stutter_expression "=" Non_stutter_expression

Non_stutter_expression "<=" Stutter_expression
Stutter_expression "<=" Non_stutter_expression
Non_stutter_expression "<=" Non_stutter_expression

% Inclusion test: in(Elt,Set)

"in" "(" Non_stutter_expression "," Non_stutter_expression ")"
"in" "(" Stutter_expression "," Non_stutter_expression ")"
% Syntactic sugar for inequality:

Non_stutter_expression "/=" Stutter_expression
Stutter_expression "/=" Non_stutter_expression
Non_stutter_expression "/=" Non_stutter_expression

"not" " (" Non_stutter_formula ")"

"(" Non_stutter_formula ")"

Stutter_expressions_list ::=

(Stutter_expression ",")* Stutter_expression

Non_stutter_expressions_list ::=

Non_stutter_expression
Non_stutter_expression "," Expressions_list

Stutter_expression "," Non_stutter_expressions_list

u. Stutter and non stutter expressions. Expressions are composed with variables and constants,
combined by concatenation or encryption, or used with functions or sets.

Stutter_expression ::=

"(" Stutter_expression ")"
Variable_or_constant_or_nat

"inv" "(" Stutter_expression ")"

% Concatenation, right-associative:
Stutter_expression "." Stutter_expression

% Function application:

Variable_or_constant "(" Stutter_expressions_list ")"
% Set:

n{n ||}||

AVISPA v1.0 User Manual



2 USER SECTION 23

| "{" Stutter_expressions_list "}"
% Encryption : {Na.A}_inv(Ka)
| "{" Stutter_expression "}" "_" Bracketed_stutter_expression
Non_stutter_expression ::=
"(" Non_stutter_expression ")"
| var_ident "’"
| "inv" "(" Non_stutter_expression ")"
% Concatenation, right-associative:

| Non_stutter_expression "." Stutter_expression
| Stutter_expression "." Non_stutter_expression
1% 1%
| Non_stutter_expression "." Non_stutter_expression

% Function application:
| Variable_or_constant "(" Non_stutter_expression_list ")"
% Insertion of an element in a set: cons(Elt,Set)

| "cons" " (" Expression "," Expression ")"

% Deletion of an element in a set: delete(Elt,Set)
| "delete" "(" Expression "," Expression ")"

% Set:

| "{" Non_stutter_expressions_list "}"
% Encryption: {Na’.A}_(Ka.Kb’)
| "{" Non_stutter_expression "}" "_" Bracketed_expression
| "{" Stutter_expression "}" "_" Bracketed_non_stutter_expression

Expressions_list ::=
(Expression ",")* Expressions

Expression ::=
Stutter_expression
| Non_stutter_expression

Bracketed_stutter_expression ::=
"inv" "(" Stutter_expression ")"
| Variable_or_constant "(" Stutter_expressions_list ")"
| Variable_or_constant_or_nat
| "(" Stutter_expression ")"

Bracketed_non_stutter_expression ::=
var_ident "’"
| "inv" "(" Non_stutter_expression ")"
| Variable_or_constant "(" Non_stutter_expressions_list ")"

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 24

| "(" Non_stutter_expression ")"

Bracketed_expression ::=
Bracketed_stutter_expression
| Bracketed_non_stutter_expression

Variable_or_constant ::=
var_ident
| const_ident

Variable_or_constant_or_nat ::=
var_ident

| const_ident

| nat_ident

v. Predefined equational theories. In HLPSL specifications, several specific operators have prede-
fined equational properties:

” N

e concatenation: this operator, is associative:

(A.B).C = A.(B.C)

e exclusive or: this operator, "xor (A,B)”, is associative, commutative and nilpotent:

xor(xor(A,B),C) = xor(A,xor(B,C))
xor(A,B) = xor(B,A)
xor(xor(A,A),B) = B

e exponential: this operator, "exp(E,N)” representing £V, can commute exponents, and
admits an inverse for exponents:

exp(exp(E,N) ,M) = exp(exp(E,M),N)
exp(exp(E,N),inv(N)) = E

Those operators can be used in any expression: concatenation is explicitly recognised in the
grammar; xor and exp are part of the function applications in expressions.

2.1.2 HLPSL Guidelines This section will guide you for writing in a “good” way an HLPSL
specification.

AVISPA v1.0 User Manual



2 USER SECTION 25

a. Variable/constant names.
Do not use the same variable/constant name in different roles with different types.

b. Arithmetic.
Do not use arithmetic operators/relations (e.g.’+’, ’=<’). They are not supported by the trans-
lator.

c. Old/new values of variables.

A primed variable (eg. X’) represents the new value of a variable in a transition: this new value
has been either learned in the left-hand side of the transition (received on a channel, or found by
decomposing a message or searching in a set), or assigned in the right-hand side of the transition.
Assigning the new value of a variable with new() means assigning it with a fresh value (i.e. a
nonce).

A primed variable must not appear in the initialisation section, or in the intruder knowledge
declaration of a role.

d. Channels.

e Constants should not be declared of type channel;

e When only DY channels are used, then it is possible to express the transition relation of
honest agents by means of immediate reactions. In such cases the used DY channels should
be each one different from another. This can be easily achieved by declaring a different
HLPSL variable for each DY channel.

Channels should be declared as local variables of the Session role or in the Environment
role and never in the basic roles.

e. Goal specification.

Goals are specified as macros representing pre-defined safety temporal formulae built on top of
the goal predicates witness, wrequest (for weak authentication), request (for strong authenti-
cation), and secret. These goal predicates are explicitly declared in right-hand sides of HLPSL
transitions and are translated into corresponding IF facts (request and wrequest facts will be
augmented with the role ID). These predicates are used to specify secrecy and different forms of
authentication.

e Secrecy is modelled by means of the goal predicate secret(T,id,{A,B}) standing for “the
value of term T is a secret shared only between agents A and B”. The secrecy property is
violated everytime the intruder learns a value that is considered a secret and that he is not
allowed to know. (Note that if in a certain session the intruder plays the role of an honest
agent that is allowed to know the secret value, then the intruder is allowed to know it and

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 26

no attack is reported for this value.)

The label id (of type protocol_id) is used to identify the goal. In the HLPSL goal section
the statement secrecy_of id should be given to refer to it.

The set of agents sharing the secret has to be written as a constant set, and not by using a
variable of type agent set.

The secrecy events should be given as early as possible, i.e. right when the secret term has
been created in the respective role(s), because the secrecy check takes effect only after the
events have been issued and it will stay in effect till the end of the protocol run.

If a value T that should be kept secret is determined by a single role (in particular, if it is an
atomic value like a nonce produced by new()), then the secrecy statement should be given
in — and only in — the role introducing the value.

If the secret is a combination of ingredients from several roles, then secrecy predicates
should be given in all roles contributing to the non-atomic secret value. Unfortunately, if
the intruder plays one of these roles in one session and legitimately learns the “secret”, then
he can re-use this value in some other session (where he does not play the role of an honest
agent) to masquerade as one of the honest agents, while the other agents believe that the
value is a shared secret between honest agent only, and this attack cannot be detected.
Still, this should not be a serious problem, since it is indicative of an authentication attack,
which should be found nevertheless.

If a role played by A shares a secret T with some player U of another role, and the identity of
U is not accessible for A (e.g. because of anonymity), the predicate secret (T,t,{U}) cannot
be given in the role of A. In this case, it should be given in the role of U instead, right after
the transition that sends T to U has been authenticated.

e Authentication is modelled by means of several goal predicates: witness(A,B,id,T1),
request(B,A,id,T2) and wrequest(B,A,id,T3). The protocol designer should respect
the following criteria:

— suppose you want to express that agent X, playing role AX, (weakly) authenticates agent
Y, playing role AY, on some information T; then it is expected that:

* in the HLPSL goal section, this property is written: authentication_on id (resp.
weak_authentication_on id), where id is a label (of type protocol_id) for
uniquely representing this goal;

% in role AX, agent X states a request(X,Y,id,T1) (resp. wrequest(X,Y,id,T1))
predicate in the right-hand side of some of its transitions;

x in role AY, agent Y states a witness(Y,X,id,T2) predicate in the right-hand side
of some of its transitions.
Note that T1 and T2 may be different terms but they should have the same value
such that the two events match.

AVISPA v1.0 User Manual



2 USER SECTION 27

— the protocol ID that appears in the third position of witness, request, and wrequest
facts must be declared of type protocol_id in a const declaration. For example,
authentication_on nb
should use witness/request facts with nb in the third slot and the following declara-
tion should appear in the specification:
const nb: protocol_id

— you should not use variables for protocol identifiers inside goal predicates; otherwise
this would be impossible to run the analysis on one specific goal, one option of the
AVISPA tool when used by an expert user. This means that for instance you should
not write

witness(A,B,ID,Term)
even if the constant value term is passed to the role as value for the variable ID. You
should write directly

witness(A,B,term,Term)
The same applies for request, wrequest and secret.

f. Transitions.

e In the left-hand side of a transition, primed variables should occur only inside a receiving
channel and they will be assigned to the received message (or part of it). For instance,
Rcv(X’) means to assign X’ to the value sent on the channel Rcv.

e Variables intended to be fresh must be written as primed in the right-hand side of a transition
(assigned to new() ) and they should not occur as primed in the left-hand side. For instance
the following transition

1. State
State’

0 /\ Rcv(start) =|>
1 /\ Nb’:=new() /\ Snd(Nb’.Textl)

shows that Nb’ is a fresh term.

g. Initial value.
In every role, a variable such that:

e it occurs inside the local declaration (therefore it does not occur in the parameter list of
the role), and

e it is not of type channel, and
e there does not exist a left-hand side of a transition in which the variable occurs primed, and

e it is not assigned in a right-hand side of a transition with a fresh value,

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 28

should be given an initial value. For summarising, a local variable has to be initialised if its
first use is unprimed.

h. Constants.

e In HLPSL it is not mandatory to declare the types for constants. However, not all the types
of constants can be uniquely inferred by the translator. (For instance, suppose you declare
a constant intended to be of type text, but without to specify its type and suppose you use
such a constant only inside a message. Then the translator can only infer that this constant
is of type message.) Hence, for more precise specifications, it is better to specify the type
of each constant used.

e The type of a constant cannot be a compound type. For instance, suppose you declare:

X : text.agent

then you cannot declare
X . text.agent

and trying to instantiate X with x. What you should do is to declare two constants:
xl : text,
X2 : agent

and then you can instantiate X with x1.x2.

1. Messages.

e Please try to avoid variables of type message. For variables, please use compound types as
much as possible. Namely:

— do not use compound types when the variable is assigned with a term that makes use
of algebraic equations;

— use compound types in the other cases. E.g. when Na_Nb is a message that would
represent a pair of texts, declare
Na_Nb : text.text
instead of
Na_Nb : message

e When the form of the message is not important, use the type protocol_id instead of
message. This is for instance the case in those protocols in which control messages like
Failure, Success, etc. are sent over the channels. In this case it is useless to declare
Failure and Success of type message since they will be used merely as constant messages
instantiated in the topmost-level role. Please declare them of type protocol_id. For in-
stance, in a protocol like

A -> S: A, B, KeyRequest

AVISPA v1.0 User Manual



2 USER SECTION 29

S > A: B, Kb
where KeyRequest is just a predefined constant control message for distinguishing between
different server requests, it is useless to declare KeyRequest of type message. You can use
a constant keyrequest of type protocol_id in the topmost-level role (e.g. Environment)
and, accordingly, you can declare a variable KeyRequest of type protocol_id in the ap-
propriate roles.

7. Knowledge.
The knowledge of an honest agent A playing the role alice is intended:

1. to contain all the parameters of the role alice,
2. to contain all the local variables of the role alice,

3. to be sufficient to execute all its transitions. For instance, if you declare for alice a
transition:
St=0 /\ RCV({M’}_Ka) =[> St’:=1 /\ SND(M’)
then every time the event in the left-hand side is fired, then it is assumed that A has enough
information to get M’ (e.g. A may know the inverse key of Ka).

Suppose the intruder is playing the role alice, then the intruder’s knowledge is supposed to
contain all the terms given as parameter of the corresponding instance of the role alice. But this
knowledge is not automatically given to the intruder; all intruder’s knowledge will have to be
declared as a set of terms in the intruder_knowledge declaration of roles. As a rule of thumb,
the whole intruder’s knowledge should be put in one single intruder_knowledge declaration
in composition roles. In case there are more than one intruder_knowledge declarations (e.g.
one per basic role), the total intruder knowledge is intended to be the union of the sets defined
in those declarations.

k. Sessions generation.

Each HLPSL specification should have a special role, called session for example, which represents
a single session of the protocol. This role is parametrised by all variables necessary for one session
(BTW: channels can be declared as local variables inside a ”"session” role instead of being in the
parameters list). For instance, in NSPK, a session might look like this:

role session(A, B: agent,
Ka, Kb: public_key) def=
composition
alice(A,B,Ka,Kb) /\
bob(A,B,Ka,Kb)
end role

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL 30

2.1.3 Example As illustration of HLPSL, we describe in this section the specification of the
well-known Needham-Schroder Public Key (NSPK) protocol. This example is usually considered
as very simple and far away from real protocols. But here we will consider a more complex variant
of the NSPK protocol: the NSPK Key Server (NSPK-KS). This protocol is given as follows, using
an Alice&Bob-based notation:

if A does not know K p,
A— S8 : AB
S — A {B7KB}K§1
A— B :{Na Ak,
if B does not know K 4,
B—S:BA
S—B: {A,KA}K?
B— A :{NaNgplk,
A— B : {Np}k,

The main difference to NSPK is that agents A and B, needing to know the public key of each
other for running the protocol, may ask the server S to supply the key if they do not already
know it. This means that some steps of the protocol are conditional.

The specification is therefore decomposed into three basic roles: alice, bob and server. In
addition, two composition roles are specified: nspk representing the classical composition of roles
alice and bob, and environment representing the composition of several instances of nspk with
one instance of server.

role alice (A, B: agent,
Ka, Ks: public_key,
KeyRing: (agent.public_key) set,
SND, RCV: channel(dy))
played_by A def=

local State : nat,
Na, Nb: text,
Kb: public_key
init State := 0
transition
% Start, if alice must request bob’s public key from key server

ask. State = 0 /\ RCV(start) /\ not(in(B.Kb’, KeyRing))
=|> State’:= 1 /\ SND(A.B)

AVISPA v1.0 User Manual



2 USER SECTION 31

% Receipt of response from key server
learn. State =1 /\ RCV({B.Kb’}_inv(Ks))
=|> State’:= 0 /\ KeyRing’:=cons(B.Kb’, KeyRing)

% Start/resume, provided alice already knows bob’s public key
knows. State = 0 /\ in(B.Kb’, KeyRing)
=|> State’:= 4 /\ Na’:=new() /\ SND({Na’.A}_Kb’)
/\ secret(Na’,na,{A,B})
/\ witness(A,B,bob_alice_na,Na’)

cont. State
=|> State’:

4 /\ RCV({Na.Nb’}_Ka)
6 /\ SND({Nb’2}_Kb)
/\ request(A,B,alice_bob_nb,Nb’)

end role

role bob(A, B: agent,
Kb, Ks: public_key,
KeyRing: (agent.public_key) set,
SND, RCV: channel(dy))

played_by B def=

local State: nat,
Na, Nb: text,
Ka: public_key
init State := 2
transition
% Start if bob must request alice’s public key from key server

ask. State 2 /\ RCV({Na’.A}_Kb) /\ not(in(A.Ka’, KeyRing))
=|> State’:= 3 /\ SND(B.A)

%» Receipt of response from key server
learn. State = 3 /\ RCV({A.Ka’}_inv(Ks))
=|> State’:= 2 /\ KeyRing’:=cons(A.Ka’, KeyRing)

AVISPA v1.0 User Manual



2.1 Specifying Protocols: HLPSL

32

% Start/resume, provided if bob knows alice’s public key
knows. State = 2 /\ RCV({Na’.A}_Kb) /\ in(A.Ka’, KeyRing)
=|> State’:= 5 /\ Nb’:=new() /\ SND({Na’.Nb’}_Ka’)

/\ secret(Nb’,nb,{A,B})
/\ witness(B,A,alice_bob_nb,Nb’)

cont. State = 5 /\ RCV({Nb}_Kb)
=|> State’:= 7 /\ request(B,A,bob_alice_na,Na)

end role

role server(S: agent,
Ks: public_key,
KeyMap: (agent.public_key) set,
SND, RCV: channel(dy))
played_by S def=

local State : nat,
A, B: agent,
Kb: public_key

init State := 8

transition
loop. State = 8 /\ RCV(A’.B’) /\ in(B’.Kb’, KeyMap)
=|> State’:= 8 /\ SND({B’.Kb’}_inv(Ks))
end role

% The role representing a partial session between alice and bob

role nspk(SND, RCV: channel(dy),
Ks: public_key,
Instances: (agent.agent.public_key.public_key) set,
KeySet: agent -> (agent.public_key) set)

def=

local A, B: agent,

AVISPA v1.0

User Manual



2 USER SECTION 33

Ka, Kb: public_key

composition
/\_{in(A.B.Ka.Kb,Instances)}
(alice(A,B,Ka,Ks,KeySet (A),SND,RCV)
/\ bob(A,B,Kb,Ks,KeySet (B),SND,RCV))

end role

role environment() def=

local KeyMap: (agent.public_key) set,
SND, RCV: channel(dy)

const a,b,s,i: agent,
ka, kb, ki, ks: public_key,
na, nb, alice_bob_nb, bob_alice_na: protocol_id

init KeyMap := {a.ka, b.kb, i.ki}

intruder_knowledge = {a, b, ks, ka, kb, ki, inv(ki)}

composition
server (s,ks, KeyMap, SND, RCV)
/\ nspk(SND, RCV, % channels
ks, % public key of server
{a.b.ka.kb, % session instances
a.i.ka.ki},
{a.{a.ka,b.kb}, % initial KeyRings
b.{b.kb},
i.{i.ki}}H)
end role
goal

secrecy_of na, nb
authentication_on alice_bob_nb

AVISPA v1.0 User Manual



2.2 Analyzing a HLPSL Specification 34

authentication_on bob_alice_na

end goal

environment ()

2.2 Analyzing a HLPSL Specification

Analyzing a protocol is entirely automatic: once the HLPSL specification has been written, the
script avispa can be used to evaluate it, and will print the result of the analysis.

For a basic use of this script, you do not need to know many options. For a more expert use,
please read the Advanced User Section (Section 3).

The AVISPA tool is composed of several modules:

e a translator for transforming HLPSL specifications (written by the user) to IF specifications
(intermediate format, see Section 3.1.2), called hlps12if (see Section 3.1.1);

e four different verification tools (back-ends) that can analyze IF specifications:

— CL-AtSe: the Constraint-Logic-based Attack Searcher (see Section 3.2.1);
— OFMC: the On-the-Fly Model-Checker (see Section 3.2.2);
— SATMC: the SAT-based Model-Checker (see Section 3.2.3);

— TA4SP: the Tree Automata tool based on Automatic Approximations for the Analysis
of Security Protocols (see Section 3.2.4).

2.2.1 Running avispa The syntax of the avispa command is one of the following:

avispa [OPTION]
avispa FILE [OPTIONS] [MODULE [MOPTIONS]]

where:

e OPTION can be:
-h, -—help display this help and exit.

-v, ——version output version information and exit.

AVISPA v1.0 User Manual



2 USER SECTION

35

e OPTIONS can be:
-—typed_model=TM

—--output=DIR

--nowarnings

e MODULE: selects a specific AVISPA sub-module. Accepted values are:

--hlpsl2if
--ofmc
——satmc
--cl-atse

-—tadsp

(Default: --ofmc)

e MOPTIONS are the options given to the selected AVISPA sub-module.

IF specifications can be generated both in an untyped variant
(set TM to no), in a typed variant (set TM to yes), and in a

strongly-typed one (set TM to strongly).
(Default: yes)

set the output directory to DIR. Namely the IF file, and any
other file generated by the selected back-end will be written in
such a directory.

(Default: $AVISPA PACKAGE/testsuite/results)

do not display warnings in executing the hlpsl2if translator.

runs only the translator.

runs the translator (no particular option), then OFMC.

runs the translator (no particular option), then SATMC.

runs the translator (no particular option), then CL-AtSe.

runs the translator (no particular option), then TA4SP.

(Default: no particular option)

e FILE is the HLPSL file to be analyzed.

Not all combination of the above settings are allowed. The allowed combinations are indicated

in the following table:

-—typed_model=

yes ‘ no ‘ strongly

--ofmc | / | v/
--satmc | 4/ v
-—cl-atse | v/ |V
-—tsdsp | +/

AVISPA v1.0

User Manual


--typed_model=

2.2 Analyzing a HLPSL Specification 36

All options for backends are detailed in the files cl.bash, ofmc.bash, satmc.bash and
tadsp.bash, in the directory $AVISPA PACKAGE/bin/backends/. For some backends, a file
(satmc.config, tadsp.config) lists the default options.

2.2.2 Generated Errors If some errors are detected during the execution of the avispa script,
a message will indicate the encountered problem. The most standard errors are:

e HLPSL specification problems: the name of a log file is given (usually in the directory
$AVISPA_PACKAGE/logs); this file contains information about the location and the cause of
the errors;

e Back-end execution problems: the printed message should be explicit.

2.2.3 Interpreting the Output When the analysis of a protocol has been successful (by
finding an attack or not), the output describes precisely what is the result, and under what
conditions it has been obtained.

The first printed section is SUMMARY; it indicates if the protocol is safe, unsafe, or if the analysis
is inconclusive.

In any case, a second section titled DETAILS will either explain under what conditions the
protocol is declared safe, or what conditions have been used for finding an attack, or finally why
the analysis was inconclusive.

The next sections, PROTOCOL, GOAL and BACKEND recall the name of the protocol, the goal of
the analysis and the name of the back-end used, respectively.

After some possible comments and statistics, the trace of the attack (if any) is printed in an
Alice&Bob notation.

More information on the format of the output produced by the AVISPA Tool is given in
Section 3.3.

2.2.4 Example For running the AVISPA tool on the NSPK Key Server protocol, with the
back-end CL-AtSe, the command is:

avispa NSPK-KS.hlpsl --cl-atse -ns -1r

Note that we have given two options to CL-AtSe: -ns for no simplifications (the output prints
all the steps); —1r for getting one of the shortest attacks.

The output is listed hereafter, and shows that a secrecy attack has been found on this protocol.

AVISPA v1.0 User Manual



2 USER SECTION

37

SUMMARY
UNSAFE

DETAILS
ATTACK_FQOUND
TYPED_MODEL

BOUNDED_SEARCH_DEPTH

PROTOCOL
NSPK-KS.if

GOAL
Secrecy attack on

BACKEND
CL-AtSe

STATISTICS
Analysed : 2660
Reachable : 1567
Translation: 0.10
Computation: 4.50

ATTACK TRACE

i -> (a.6): start

(a.6) > i: a,i

i-> (s.2): X1A,i

(n23Nb)

states
states
seconds
seconds

(s.2) > i: A{i,ki}_(inv(ks))

i > (s.2): X2A,a

(s.2) > 1i: A{a,ka}_(inv(ks))
i > (a.6): {i,ki}_(inv(ks))
(a.6) —> i: {n33Na,a}_(ki)

i > (b.5): {n33Na,a}_(kb)

(b.5) => i: b,a

i > (b.5): {a,ka}_(inv(ks))
(b.5) —> i: {n33Na,n23Nb}_(ka)

ISR S S S

&

TestNotInSet ({i,X32Kb}_(set_93))

TestInSet ({i,ki}_(set_91))
TestInSet({a,ka}_(set_91))

Secret (n33Na,set_124)
AddToSet ({i,ki}_(set_93))
AddToSet ({a}_(set_124))
AddToSet ({i}_(set_124))

TestNotInSet ({a,X22Ka}_(set_94))

Secret (n23Nb,set_117)
Witness(b,a,nb,n23Nb)
AddToSet ({a,ka}_(set_94))

AVISPA v1.0

User Manual



2.2 Analyzing a HLPSL Specification 38

& AddToSet ({a}_(set_117))
& AddToSet ({b}_(set_117))
i -> (a.6): {n33Na,n23Nb}_(ka)
(a.6) -> i: {n23Nb}_(ki)

The description of the attack is not very difficult to understand, but a detailed study of the
output of the AVISPA tool is given in Section 3.3.

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 39

3 Advanced User Section

AVISPA users who want to do more than just using the avispa script file will find in the following
sections important details, guiding them for exploiting all the possible options at each step of the
AVISPA tool architecture (Figure 2).

[ High—Level Protocol Specification Language (HLPSL) }

'

Translator
HLPSL2IF

l

[ Intermediate Format (IF) ]

[

On—the—fly CL-based SAT-based Tree Automata—based
Model-Checker Attack Searcher Model—Checker Protocol Analyser
TA4SP

OFMC AtSe SATMC

[ Output Format (OF) ]

Figure 2: Architecture of the AVISPA tool v.1.0

3.1 Generating an IF Specification

Given a HLPSL specification written in a file with extension hlpsl, the first step is to translate it
into a lower level specification. This is automatically done by the translator h1ps12if, generating
a specification in an intermediate format, IF. The resulting file has the same name, with extension
if.

3.1.1 Automatic Translation from HLPSL to IF This section lists the possible parameters
of the hlpsl12if translator. hlps12if is a translator that maps security protocol specifications
written in HLPSL into rewriting systems written in IF. It is written in Objective Caml which is
an implementation of the ML language, based on the Caml Light dialect.

USAGE:
hlpsl2if [options] [file.hlpsl]

AVISPA v1.0 User Manual



3.1 Generating an IF Specification 40

Options:
--types Print identifiers and their types
--init Print initial state
--rules Print protocol rules
--goals Print goals
--all Print everything (default)
--split Split goals in different IF files
--stdout Print on the standard output

--output dir Set the output directory (default: same as input)
--nowarnings Do not display warnings

-help Display this list of options

--help Display this list of options

3.1.2 The IF Specification Language In the following we give the entire BNF of the IF
(with the usual conventions).

a. Lexical entities. In IF, the conventions are the same as in HLPSL: all variables start with
a capital letter, and constants start with a small letter; natural numbers can also be used as
constants (without any specific interpretation).

var_ident: [A-Z] [A-Za-z0-9_]x*
const_ident: [a-z][A-Za-z0-9_]x*
nat_ident: [0-9]+

Comments start by the symbol %, and finish at the end of the line.

b. Prelude and IF files. The grammar has two start symbols, Prelude and IF_File. The first
one permits to describe the pre-defined file prelude.if, containing general information about
protocols specifications in IF: available types, super types, signature of functions and predicates,
variables and constants declaration, equations, and the intruder behaviour. For more information
on this file, see Section 3.1.3.

The second start symbol corresponds to the description of a protocol specification in IF: signature
of role states, variables and constants declaration, initialisation, transition rules, properties to
satisfy, and attack states to reach.

Prelude ::=
TypeSymbolsSection
SignatureSection
TypesSection

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 41

EquationsSection
IntruderSection

IF_File ::=
SignatureSection
TypesSection
InitsSection
RulesSection
PropertiesSection
AttackStatesSection

c. Section for type symbols. This section contains the list of constant names representing the basic
types available, such as agent, public_key, symmetric_key, ...

TypeSymbolsSection ::=
"'section typeSymbols:" ConstantList

ConstantList ::=
const_ident ("," const_ident)x*

d. Section for signature. This section is decomposed in three parts: the declaration of super types
(an ordered precedence between some types); the declaration of function symbols; the declaration
of predicate symbols

SignatureSection ::=
"'section signature:" SignatureSectionO

SignatureSectionO ::=
SuperTypeDeclarationk

| FunctionDeclarationx

| PredicateDeclarationx

One super type (message for example) is very useful for avoiding to have as many copies of
functions and predicates as there are types.

SuperTypeDeclaration ::=
IF _Type ">" IF_Type

IF _Type ::=
const_ident

AVISPA v1.0 User Manual



3.1 Generating an IF Specification

42

The type of a function is declared in a very standard way. The only difference with the type

of a predicate is that the result of a predicate is of type fact.

FunctionDeclaration ::=

IF _Operator ":" TypeStar "->" Type

PredicateDeclaration ::=

IF_Operator ":" TypeStar "->" "fact"

IF_Operator ::
const_ident

TypeStar ::=

Type
| Type "*" TypeStar

Type ::=
IF _Type

| IF_Operator "(" TypeList ")"

| "{" ConstantNatList "}"

TypelList ::=
Type (u’ " Type)*

ConstantNatList ::=

(const_ident | nat_ident) ("," (const_ident | nat_ident))*

Note that types may be compound, using functions representing pairing, encryption, ..

e. Section for variables and constants declaration. Variables and constants are all declared using

types and functions declared in the prelude file.

TypesSection ::=

"section types:" TypeDeclarationx*

TypeDeclaration ::=
AtomicTermList ":" Type
AtomicTermList ::=
AtomicTerm ("," AtomicTerm)*

AVISPA v1.0

User Manual



3 ADVANCED USER SECTION 43

AtomicTerm ::=
const_ident

| nat_ident

| var_ident

f. Section for equations. This section represents the equational theory that has to be considered
for some specific function operators, such as pair, xor and exp.

EquationsSection ::=
"section equations:" Equation*

Equation ::=
Term "=" Term

Term ::=
AtomicTerm
| ComposedTerm

ComposedTerm ::=
IF_Operator "(" TermList ")"

TermList ::=
Term ("," Term)x*

g. Section for initialisation. This section contains all the initial information needed before starting
the analysis of the protocol: the intruder initial knowledge, the instantiated roles states, and some
additional information needed for the two previous information.

InitsSection ::=
"section inits:" ("initial_state" const_ident ":=" State)+

State ::=
Fact ("." Fact)*

Fact ::=
IF_Fact "(" TermList ")"

IF_Fact ::=
"state_"const_ident
| const_ident

AVISPA v1.0 User Manual



3.1 Generating an IF Specification 44

h. Section for transition rules. Contrarily to a HLPSL specification, all the transitions of the
protocol are listed in the same section, independently of the concerned role.

RulesSection ::=
"section rules:" RuleDeclaration*

A transition starts with a unique label and the list of variables involved; the left-hand side is a
list of facts (containing mostly a role state fact), plus maybe some positive or negative conditions;
the right-hand side is a list of facts.

RuleDeclaration ::=
"step" const_ident "(" VariableList ")" ":="
CState ExistsVar? "=>" State

CState ::=
State ConditionList

ConditionList ::=
("&" Condition)*

Condition ::=
PositiveCondition
| NegativeCondition

PositiveCondition ::=
||equa1|| n(n Term ||,|| Term u)u
| "leq" u(u Term non Term u)u

NegativeCondition ::=
"IlOt" n (n COHditiOl’l ||) n
| "not" n (n Fact u) n

ExistsVar ::=
"=[exists" VariableList "]"

VariablelList ::=
var_ident ("," var_ident)*

Variables that have to receive a fresh value for this transition are listed in the implication, after
the exists keyword.

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 45

1. Section for properties. This section contains properties described by LTL formulas. They have
to be satisfied all along the execution trace, provided the analysers can handle them.

Those properties come either directly from LTL formulas written in the HLPSL specification, or
from the HLPSL macro goals for secrecy and authentication.

PropertiesSection ::=
"'section properties:" PropertyDeclaration

PropertyDeclaration ::=
"property" PropertyID "(" VariableList ")" ":="
"[]" LTL_Formula

PropertyID ::=
AttackStatelD
| "1tl_"nat_ident

LTL_Formula ::=

LTL_predicate
| "<->" LTL_formula
| "(-)" LTL_formula
| "[-]" LTL_formula
| LTL_formula "/\" LTL_formula
| LTL_formula "\/" LTL_formula
| LTL_formula "=>" LTL_formula
| "~ LTL_formula
| "(" LTL_formula ")"

LTL_predicate ::
Fact
| PositiveCondition

In such temporal formulas, ”"<->” means “sometimes in the past”, 7 (-)” means “one time in-
stant in the past”, ” [-]” means “globally in the past”. The other symbols are standard logical
connectives (conjunction, disjunction, implication and negation, respectively).

j. Section for attack states. This is a second goal section, containing descriptions of states repre-
senting attacks. The contents of this section comes from the HLPSL macro goals for authentica-
tion and secrecy.

AttackStatesSection ::=
"section attack_states:" AttackStateDeclarationx

AVISPA v1.0 User Manual



3.1 Generating an IF Specification 46

AttackStateDeclaration ::=
"attack_state" AttackStateID "(" VariableList ")" ":=" CState

AttackStatelD ::=
"secrecy_of_"const_ident

| "authentication_on_"const_ident

| "weak_authentication_on_"const_ident

k. Section for intruder behaviour. This section contains the description of the intruder behaviour,
represented by transition rules.

IntruderSection ::=
"section intruder:" RuleDeclarationx*

In the current version of the AVISPA tool, this section is unique because only the Dolev-Yao
model is supported. In a close future, it should be parametrised by the model to consider.

3.1.3 IF Prelude File The IF prelude file (prelude.if) contains some information about
the IF syntax for back-ends. It also contains the description of equational properties of some
operators (such as pair, exp and xor) and the intruder’s behaviour (in the Dolev-Yao model).

section typeSymbols:

agent, text, symmetric_key, public_key, hash_func,
message, fact, nat, protocol_id, bool, set

section signature:

message > agent

message > text

message > symmetric_key
message > public_key
message > hash_func
message > nat

message > protocol_id
message > bool

message > set

% concatenation: pair(Msgl,Msg2)

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 47

pair ! message * message —> message

% asymmetric encryption: crypt(Key,Message)
crypt ! message * message —> message

% inverse of a public key (=private key): inv(Key)
inv : message -> message

% symmetric encryption: scrypt(Key,Message)
scrypt  : message * message -> message

% exponentiation: exp(Base,Exponent)

exp ! message * message —> message

% exclusive or: xor(N1,N2)

Xor ! message * message —> message

% application of a hash function: apply(F,Arg)
apply . message * message —> message

% intruder knowledge: iknows (ki)

iknows : message —-> fact

% set element: contains(a,set_1)

contains : message * set -> fact

% witness for authentication: witness(A,B,id,Msg)

witness : agent * agent * protocol_id * message -> fact
% request for strong authentication: request(B,A,id,Msg,RolelD)
request : agent * agent * protocol_id * message * nat -> fact

% request for weak authentication: wrequest(B,A,id,Msg,RoleID)
wrequest : agent * agent * protocol_id * message * nat -> fact
% secrecy: secret(Msg,id,AgentSet)

secret : message * protocol_id * set(agent) -> fact

section types:

% declaration of the pre-defined constants:

true, false: bool

% declaration of the variables used in this file:

PreludeK,PreludeM,PreludeMl,PreludeM2,PreludeM3 : message
section equations:

% associativity of concatenation:

pair(PreludeM1,pair(PreludeM2,PreludeM3))

= pair(pair(PreludeM1,PreludeM2) ,PreludeM3)

% identity of double inverse:

AVISPA v1.0 User Manual



3.1

Generating an IF Specification

48

section intruder:

inv(inv(PreludeM)) = PreludeM

% commutation of exponents:
exp (exp (PreludeM1,PreludeM2) ,PreludeM3)
% cancellation of inverse exponents:

= exp(exp(PreludeM1,PreludeM3) ,PreludeM2)

exp (exp(PreludeM1,PreludeM2) ,inv(PreludeM2)) = PreludeM1

% associativity of xor:

xor (PreludeM1, xor (PreludeM2,PreludeM3))
% commutativity of xor:
xor (PreludeM1,PreludeM2) =
% nilpotency of xor:

xor (xor (PreludeM1,PreludeMl) ,PreludeM2)

xor (PreludeM2

% generating rules:
step gen_pair (PreludeM1,PreludeM2) :=
iknows (PreludeM1) . iknows (PreludeM2) =>
step gen_crypt (PreludeMi,PreludeM2) :=
iknows (PreludeM1) . iknows (PreludeM2) =>
step gen_scrypt (PreludeMl,PreludeM2) :=
iknows (PreludeM1) . iknows (PreludeM2) =>
step gen_exp (PreludeMl,PreludeM2) :=
iknows (PreludeM1) . iknows (PreludeM2) =>
step gen_xor (PreludeMl,PreludeM2) :=
iknows (PreludeM1) . iknows (PreludeM2) =>
step gen_apply (PreludeMi,PreludeM2) :=
iknows (PreludeM1) . iknows (PreludeM2) =>

% analyzing rules:
step ana_pair (PreludeM1,PreludeM2) :=

= xor (xor(PreludeM1,PreludeM?2) ,PreludeM3)
,PreludeM1)

= PreludeM2

% for the Dolev-Yao model

iknows (pair (PreludeM1,PreludeM2))
iknows (crypt (PreludeM1,PreludeM2))
iknows (scrypt (PreludeM1,PreludeM2))
iknows (exp (PreludeM1,PreludeM2))
iknows (xor (PreludeM1,PreludeM2))

iknows (apply (PreludeM1,PreludeM2))

iknows (pair (PreludeMi,PreludeM2)) => iknows(PreludeM1) .iknows (PreludeM2)

step ana_crypt (PreludeK,PreludeM) :=

iknows (crypt (PreludeK,PreludeM)) . iknows (inv(PreludeK)) => iknows(PreludeM)

step ana_scrypt (PreludeK,PreludeM) :=

iknows (scrypt (PreludeK,PreludeM)) .iknows (PreludeK) => iknows(PreludeM)

% generating fresh constants of any type
step generate (PreludeM) :=
=[exists PreludeM]=> iknows(PreludeM)

AVISPA v1.0

User Manual



3 ADVANCED USER SECTION 49

3.1.4 Example The IF specification given in the following has been automatically generated
from the HLPSL specification of the Needham-Schroder Public Key Protocol with Key Server
(Section 2.1.3).

Note that in the initial state, arguments of a role state that have not been initialised are
assigned to a generic constant, for example dummy_agent for an argument of type agent.

In the transition rules, in general, when an argument of a role state is modified, its old value
(in the left-hand side) is denoted with a generic name, for example Dummy Na if the argument is
called Na.

The description of sets is given by a list of contains facts, one per element. The set itself is
identified by a constant (set_94 for example). Reading, adding or removing elements in a set is
possible only if the set identifier is known.

%% IF specification of NSPK-KS.hlpsl
section signature:

state_bob: agent * agent * public_key * public_key
* set(pair(agent,public_key)) * nat * text * text * public_key
* set(agent) * set(agent) * nat -> fact

state_alice: agent * agent * public_key * public_key
* set(pair(agent,public_key)) * nat * text * text * public_key
* set(agent) * set(agent) * nat -> fact

state_server: agent * public_key * set(pair(agent,public_key))
* agent * agent * public_key * nat -> fact

section types:

MGoal, start: message

snb, nb, na, sna: protocol_id

ASGoal, Set_45, Set_44, Set_27, Set_23: set(agent)

set_94, set_93, set_91, KeyMap, KeyRing: set(pair(agent,public_key))

Na, Nb, Dummy_Nb, Dummy_Na, dummy_nonce: text

set_124, set_123, set_117, set_116, set_106, set_105: set

dummy_pk, ka, kb, ki, ks, Kb, Ks, Ka, Dummy_Ka, Dummy_Kb: public_key
dummy_agent, A2Goal, AlGoal, a, b, s, A, B, S, Dummy_B, i, Dummy_A: agent
Sipb, Sib2, Sipi, 3, 1, 6, 2, 5, 0, 4: nat

section inits:

AVISPA v1.0 User Manual



3.1 Generating an IF Specification 50

initial_state initl :=

iknows (start) .

iknows (ki) .

iknows (inv(ki)).

iknows(a) .

iknows (b) .

iknows (ks) .

iknows (ka) .

iknows (kb) .

iknows (i) .

state_server(s,ks,set_91,dummy_agent,dummy_agent ,dummy_pk,2) .

state_alice(a,b,ka,ks,set_93,0,dummy_nonce,dummy_nonce,dummy_pk,
set_105,set_106,4).

state_bob(b,a,kb,ks,set_94,0,dummy_nonce,dummy_nonce,dummy_pk,
set_116,set_117,5).

state_alice(a,i,ka,ks,set_93,0,dummy_nonce,dummy_nonce,dummy_pk,
set_123,set_124,6).

contains(pair(a,ka),set_91).

contains(pair(b,kb),set_91).

contains(pair(i,ki),set_91).

contains(pair(a,ka),set_93).

contains(pair(b,kb),set_93).

contains(pair(b,kb),set_94)

section rules:

step step_0 (S,Ks,KeyMap,Dummy_A,Dummy_B,Dummy_Kb,SID,A,B,Kb) :=
state_server(S,Ks,KeyMap,Dummy_A,Dummy_B,Dummy_Kb,SID) .
iknows(pair(A,B)).

contains(pair(B,Kb) ,KeyMap)

=>

state_server(S,Ks,KeyMap,A,B,Kb,SID).

iknows (crypt (inv(Ks) ,pair(B,Kb))) .

contains(pair(B,Kb) ,KeyMap)

step step_1 (A,B,Ka,Ks,KeyRing,Dummy_Na,Nb,Dummy_Kb,Set_23,Set_27,SID,Na,Kb) :=
state_alice(A,B,Ka,Ks,KeyRing,0,Dummy_Na,Nb,Dummy_Kb,Set_23,Set_27,SID).
iknows (start) .

contains(pair(B,Kb) ,KeyRing)

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 51

=[exists Nal]=>
state_alice(A,B,Ka,Ks,KeyRing,2,Na,Nb,Kb,Set_23,Set_27,SID).
iknows (crypt (Kb,pair(Na,A))).

witness(A,B,na,Na).

secret(Na,sna,Set_23).

contains(A,Set_23).

contains (B,Set_23).

contains(pair(B,Kb) ,KeyRing)

step step_2 (A,B,Ka,Ks,KeyRing,Na,Nb,Dummy_Kb,Set_23,Set_27,SID) :=
state_alice(A,B,Ka,Ks,KeyRing,0,Na,Nb,Dummy_Kb,Set_23,Set_27,SID).
iknows (start) &

not (contains(pair(B,Kb) ,KeyRing))

=>
state_alice(A,B,Ka,Ks,KeyRing,1,Na,Nb,Dummy_Kb,Set_23,Set_27,SID).
iknows (pair(A,B))

step step_3 (A,B,Ka,Ks,KeyRing,Dummy_Na,Nb,Dummy_Kb,Set_23,Set_27,SID,Na,Kb)
state_alice(A,B,Ka,Ks,KeyRing,1,Dummy_Na,Nb,Dummy_Kb,Set_23,Set_27,SID).
iknows (crypt (inv(Ks) ,pair (B,Kb)))
=[exists Na]=>
state_alice(A,B,Ka,Ks,KeyRing,2,Na,Nb,Kb,Set_23,Set_27,S3ID).
iknows (crypt (Kb,pair(Na,A))).
witness(A,B,na,Na).
secret(Na,sna,Set_27).
contains(pair(B,Kb) ,KeyRing) .
contains(A,Set_27).
contains (B,Set_27)

step step_4 (A,B,Ka,Ks,KeyRing,Na,Dummy_Nb,Kb,Set_23,Set_27,SID,Nb) :=
state_alice(A,B,Ka,Ks,KeyRing,2,Na,Dummy_Nb,Kb,Set_23,Set_27,SID).
iknows (crypt (Ka,pair(Na,Nb)))

=>

state_alice(A,B,Ka,Ks,KeyRing,3,Na,Nb,Kb,Set_23,Set_27,SID).

iknows (crypt (Kb,Nb)) .

request (A,B,nb,Nb,SID)

step step_5 (B,A,Kb,Ks,KeyRing,Dummy_Na,Dummy_Nb,Dummy_Ka,Set_44,Set_45,

SID,Na,Nb,Ka) :=
state_bob(B,A,Kb,Ks,KeyRing,0,Dummy_Na,Dummy_Nb,Dummy_Ka,Set_44,Set_45,SID).
iknows (crypt (Kb,pair(Na,A))).

AVISPA v1.0 User Manual



3.1 Generating an IF Specification 52

contains(pair(A,Ka) ,KeyRing)
=[exists Nb]=>
state_bob(B,A,Kb,Ks,KeyRing,2,Na,Nb,Ka,Set_44,Set_45,SID).
iknows (crypt (Ka,pair(Na,Nb))).

witness(B,A,nb,Nb).

secret (Nb,snb,Set_44).

contains (A,Set_44) .

contains (B,Set_44) .

contains(pair(A,Ka) ,KeyRing)

step step_6 (B,A,Kb,Ks,KeyRing,Dummy_Na,Nb,Dummy_Ka,Set_44,Set_45,SID,Na) :=
state_bob(B,A,Kb,Ks,KeyRing,0,Dummy_Na,Nb,Dummy_Ka,Set_44,Set_45,3ID).
iknows (crypt (Kb,pair(Na,A))) &

not (contains(pair(A,Ka) ,KeyRing))

=>

state_bob(B,A,Kb,Ks,KeyRing,1,Na,Nb,Dummy_Ka,Set_44,Set_45,SID) .

iknows (pair(B,A))

step step_7 (B,A,Kb,Ks,Dummy_KeyRing,Na,Dummy_Nb,Dummy_Ka,Set_44,Set_45,
SID,Nb,Ka) :=
state_bob(B,A,Kb,Ks,KeyRing,1,Na,Dummy_Nb,Dummy_Ka,Set_44,Set_45,SID).
iknows (crypt (inv(Ks) ,pair(A,Ka)))
=[exists Nb]=>
state_bob(B,A,Kb,Ks,KeyRing,2,Na,Nb,Ka,Set_44,Set_45,SID).
iknows (crypt (Ka,pair(Na,Nb))).
witness(B,A,nb,Nb).
secret (Nb,snb,Set_45).
contains(pair(A,Ka) ,KeyRing) .
contains (A,Set_45).
contains (B, Set_45)

step step_8 (B,A,Kb,Ks,KeyRing,Na,Nb,Ka,Set_44,Set_45,SID) :=
state_bob(B,A,Kb,Ks,KeyRing,2,Na,Nb,Ka,Set_44,Set_45,SID).
iknows (crypt (Kb,Nb) )

=>
state_bob(B,A,Kb,Ks,KeyRing,3,Na,Nb,Ka,Set_44,Set_45,SID).
wrequest (B,A,na,Na,SID)

section properties:

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 53

property authentication_on_nb (A1Goal,A2Goal,MGoal,SID,SID1,SID2) :=
[1 (((request(A1Goal,A2Goal,nb,MGoal,SID) /\ ~ equal(A2Goal,i))
=> witness(A2Goal,Al1Goal,nb,MGoal))
/\ ((request(A1Goal,A2Goal,nb,MGoal,SID1)
/\ request(A1Goal,A2Goal,nb,MGoal,SID2)
/\ 7 equal(A2Goal,i))
=> equal (SID1,SID2)))

property weak_authentication_on_na (Al1Goal,A2Goal,MGoal,SID) :=
[1 ((wrequest(A1Goal,A2Goal,na,MGoal,SID) /\ ~ equal(A2Goal,i))
=> witness(A2Goal,A1Goal,na,MGoal))

property secrecy_of_sna (MGoal,ASGoal) :=
[1 ((secret(MGoal,sna,ASGoal) /\ iknows(MGoal))
=> contains(i,ASGoal))

property secrecy_of_snb (MGoal,ASGoal) :=
[1] ((secret(MGoal,snb,ASGoal) /\ iknows(MGoal))
=> contains(i,ASGoal))

section attack_states:

attack_state authentication_on_nb (Al1Goal,A2Goal,MGoal,SID) :=

request (A1Goal,A2Goal,nb,MGoal,SID) &

not (witness(A2Goal,Al1Goal,nb,MGoal)) &

not (equal (A2Goal,i))

attack_state replay_protection_on_nb (A2Goal,Al1Goal,MGoal,SID1,SID2) :=
request (A1Goal,A2Goal,nb,MGoal,SID1).

request (A1Goal,A2Goal,nb,MGoal,SID2) &

not (equal (SID1,8ID2)) &

not (equal (A2Goal,i))

attack_state weak_authentication_on_na (A1Goal,A2Goal,MGoal,SID) :=
wrequest (A1Goal,A2Goal,na,MGoal,SID) &

not (witness(A2Goal,Al1Goal,na,MGoal)) &

not (equal (A2Goal,i))

attack_state secrecy_of_sna (MGoal,ASGoal) :=
iknows (MGoal) .
secret (MGoal,sna,ASGoal) &

AVISPA v1.0 User Manual



3.2 Analysing a IF Specification 54

not (contains (i, ASGoal))

attack_state secrecy_of_snb (MGoal,ASGoal) :=
iknows (MGoal) .
secret (MGoal,snb,ASGoal) &
not (contains (i, ASGoal))

3.2 Analysing a IF Specification

This section contains the description of the use of each back-end provided by the AVISPA tool.

3.2.1 Using CL-AtSe The CL-based Model-Checker (CL-Atse) provides a translation from any
security protocol specification written as transition relation in the IF, into a set of constraints
which can be effectively used to find attacks to protocols. Both translation and checking are fully
automatic and internally performed by CL-Atse, i.e. no external tool is used.

In this approach, each protocol step is modeled by constraints on the adversary’s list of
knowledges. For example, a message received by an honest participant is a forgeability constraint
for the adversary. Conditions like equality, inequality, element or non-element of a list are also
constraints. To interpret the IF transition relation, each role is partially pre-executed to extract
an exact and minimal list of constraints modeling it. The participants’s states and knowledges
are eliminated thanks to the use of global variables. Any protocol step is executed by adding new
constraints to the system and reduce/eliminate other constraints accordingly. Finally, at each
step the system state is tested against the provided set of security properties.

The analyze algorithm used by CL-Atse is designed for a bounded number of loops, i.e. a
bounded number of protocol steps in any trace. That is, if the protocol specification is loop-free,
then the whole specification is analyzed, otherwise the user must provide an integer bound on the
maximal number of loop iterations. With a bounded number of loop iterations, the search for
attacks is correct and complete, and corresponds to an optimized deterministic implementation
of the NP-Completeness result from [14].

While reading the IF file, CL-Atse tries by default to simplify the protocol specification. The
goal of that is to reduce the total number of protocol steps that need to be checked. Since most
of the execution time is consumed in testing all possible interleaving of the protocol steps, this
simplification can be very important for the biggest protocols. The idea is to identify and mark
the protocol steps that can be executed as late, or as soon, as possible. This information is then
used to reduce the step interleaving.

CL-Atse is able to take advantage of the algebraic properties of the XOR, operator, and most
properties of the exponential. In order to model algebraic properties of certain operators, CL-Atse
implements a variant of the Baader and Shoultz unification algorithm, optimized for XOR and
usable for the exponential.

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 55

Finally, CL-Atse tries to produce nice human-readable attack description (when one is found).
In particular, choice points are identified by keyword and step indent; both a short and detailed
attack are given; and the simplified protocol specification analyzed by CL-Atse is provided on
demand. The user can also compare the simplified and non-simplified protocol specification by
using the ”-ns” and ”-noexec” options.

Usage. CL-Atse can be invoked by typing on the command-line

cl-atse <filename> [-nb n] [-v] [-ns] [-noexec] [-notypel
[-short] [-light] [-out] [-help]

in any order, where each option is described as follow:

e nb n: Maximum number of loop iteration in any trace. Only used when the protocol
specification contains loops. The default is 3.

e v: Verbose mode. In this mode, CL-Atse displays the analyzed (maybe simplified) protocol
specification and a bit more details in the attack trace. Otherwise, CL-Atse only displays a
compact attack trace with the summary.

e ns: No simplification. Not recommended, unless used with noexec. With this option, the
simplification step is skipped.

e noexec: Do not analyze the protocol. Usually only used to see the protocol specification
(-v) without spending time in the analysis.

e notype: No type mode. Is this mode, CL-Atse considers all variables to be of generic type
(or "no type”), i.e. the typing constraints described in the IF file are not checked. This
option is very useful to discover type-flaw attacks.

e light: Force the use of non-algebraic pairing operator in the unification algorithm. Other-
wise, the unification algorithm tries to consider the associativity property of the pairing.

e short: Ask CL-AtSe to output a minimal attack if possible, i.e. an attack with a minimal
number of protocol steps. Same effect as -1r. It usually need more memory, and a bit more
cpu time, that finding any attack. It performs a breath-first search instead of depth-first in
the protocol step interleaving tree.

(*

e td: Perform depth-first search in the protocol step interleaving tree. (By default, uses less
memory)

AVISPA v1.0 User Manual



3.2 Analysing a IF Specification 56

e 1r: Perform breath-first search in the step interleaving tree. (Find minimal attacks at the
cost of memory use.) Usually slower than -td due to a lot of memory access, garbage
collector, etc... *)

e out: Write the attack to ”filename.atk” instead of using stdout.
e dir d: Chose d as the output directory.

e help: Write a summary of all options, including debugging options.

The cl-atse verbose output format Using the -v or -noexec option(s) of cl-atse, we get a detailed
view of the starting point of cl-atse. This is called the “Initial System State” in the output,
and represents both the intruder and honest participant’s states in cl-atse just after reading (and
interpreting) the if file. While the intruder state is just represented by a list of knowledges
(“Intruder knowledge:” line), the honest participants are described by a set of instantiated roles,
so called “Instantiated protocol specification”. While the syntax of this protocol specification is
quite simple, it needs a few explanations.

Role instances : In cl-atse, each protocol role must be independent from the others and
use different variable names. Therefore, each role in the IF file is instantiated into a set of roles,
one for each “state_” fact in the initial state. This instantiation actually “runs” the participant
role, generate new variable names, and extract a (minimal) set of constraints representing this
role. For example, a variable GX in role “Server” might become GX(1) and GX(2) in two role
instances of this “Server”. Also, any nonce (say, Na) generated in the specification is replaced
by a different constant in each role instance (say, n1(Na) and n2(Na)). For readability the set of
constraints representing each role instance is displayed in the following Send/Receive syntax:

Step :  Received Msg = Sent Msg [sigma] & Inequalities & IF Facts

where sigma is a unification constraint (i.e. a set of equalities). For conciseness, the & symbol
is only written for new lines. Any non-determinism in the role execution is represented by a
choice point on a set of roles. When a choice point is executed, the system (in fact, the intruder)
chooses what branch will be run. Finally, a role consists in a tree where unary nodes are protocol
steps and n-ary nodes are choice points. An execution of a role is a path in this tree. An output
example follows.

Intruder state

Intruder Knowledge : start i {i,ki}_(inv(kca)) inv(ki) ki kca

List of initial intruder knowledges.

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 57

Unforgeable terms : inv(ks) inv(kca)

Computed list of term that the intruder cannot forge.

Interpreted protocol specification

Role server played by (s,7):

First instance of the role “server”.

| start => s, ks, n26(Ns)

First step: receives start and send a nonce n26(Ns).

| Choice Point

Second step: chose one branch or the other.

| | Csus(27), {i,ki}_(inv(kca)) => n27(SeID)

Third step: assumes {7, ki} jno(kea) Was received.

Other steps.

| Or
| | Csus(31), {s,ks}_(inv(kca)) => n31(SeID), n31(Ns)

Third step (other choice): assumes {s, ks} jny(keca) Was received.

Other steps.

IF Facts FEach protocol step contains all the facts found for this step in the IF file (except
the state). While their syntax might look a bit different than original IF facts due to cl-atse’s
internal fact representation, their semantic is identical. Major differences are :

e contains(term, set) facts are changed into “Test term in set”, “Test term not in set”, “Add
term to set”, and “Remove term from set” depending on the position of the contains(..)
fact in the rule, and following the semantic of contains(..) facts. Tests are preconditions for
the protocol step containing them.

o secret(term, mark, set) becomes “Secret (term,set)”.

AVISPA v1.0 User Manual



3.2 Analysing a IF Specification 58

3.2.2 Using 0FMC The On-the-Fly Model-Checker OFMC builds the infinite tree defined by
the protocol analysis problem in a demand-driven way, i.e. on-the-fly, hence the name of the
back-end. It uses a number of symbolic techniques to represent the state-space as described in
more detail in [9, 8]. Thanks to these techniques, OFMC can be employed not only for efficient
falsification of protocols (i.e. fast detection of attacks), but also for verification (i.e. proving the
protocol correct) for a bounded number of sessions — without bounding the messages an intruder
can generate.

The most significant new feature of OFMC in this release is that the user can specify an alge-
braic theory on message terms, modulo which the analysis of the protocol is performed. For more
information on using algebraic theories, see the file "user-guide-algebraic.pdf” in the docs/ofmc
directory included in this distribution. Example theories and sample IF specifications that em-
ploy algebraic theories can be found in the directory testsuite/algebraic.

Usage. OFMC is invoked by typing on the command-line

ofmc <filename> [-theory <theoryfile>] [-sessco] [untyped]
[-d <number>] [-p <number>*]

e <filename> is an IF file to be checked.

e The -theory option allows the user to specify a custom algebraic theory given in the file
<TheoryFile>. See the file "user-guide-algebraic.pdf” in the docs/ofme directory for more
information, including details about the default algebraic theory used by OFMC. See also
the examples in the directory testsuite/algebraic. Note that user-defined theories are
currently only supported for protocols specified directly in IF. The -—no-hlpsl2if option
can be useful when passing IF specifications directly to the AVISPA Tool.

e When using the -sessco option, OFMC will first perform a search with a passive intruder
to check whether the honest agents can execute the protocol, and then give the intruder
the knowledge of some “normal” sessions between honest agents. In the case certain steps
cannot be executed by any honest agent, OFMC reports that the protocol is not executable
and stops. If the executability check is successful, then the normal search with an active
intruder is started, with the only difference that the intruder initially knows all the messages
exchanged by the honest agents in the passive intruder phase.

e The untyped option forces OFMC to ignore all types specified in an IF file. (This is
equivalent to specifying no types at all in IF or to give atom and variable the type message).

e Using the -d option one can specify a depth bound for the search (the default being un-
bounded depth). In this case, OFMC uses a depth-first search (while the standard search
strategy is a combination of breadth-first search and iterative deepening search).

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION 59

e Using the -p option, one can “manually browse” the search tree, e.g.:

-p is the root node,
-p 0 is the first (left-most) successor of the root node,

-p 0 1 is the second successor (next to left-most) successor of the node obtained by
-p O.

An exception is raised if a path to a non-existing node is specified.

3.2.3 Using SATMC The SAT-based Model-Checker (SATMC, [5]) builds a propositional for-
mula encoding a bounded unrolling of the transition relation specified by the IF, the initial state
and the set of states representing a violation of the security properties. (The SAT compilation
of IF specifications results from the combination of a reduction of security problems to planning
problems and SAT-encoding techniques developed for planning.) The propositional formula is
then fed to a state-of-the-art SAT solver and any model found is translated back into an attack.

In implementing SATMC, we have given a great deal of care on design issues related to
flexibility, modularity, and efficiency. The result of such an effort is an open and flexible platform
for SAT-based bounded model checking of security protocols. For instance, improvements of SAT
technology can be readily exploited by integrating in a plug and play manner state-of-the-art
SAT-solvers (e.g. the best performers in the SAT competition, [15]). Similarly, advancements and
novelties in Al planning SAT-reduction techniques can be promptly implemented in SATMC.

SATMC can be employed not only for discovering attacks on protocols, but also for verification
(i.e. proving the protocol satisfies its security requirements) of a bounded number of sessions, a
problem that has been proved (see [14]) to belong to the same complexity as SAT i.e. NP-complete.

Usage. SATMC can be invoked by typing on the command-line

satmc <filename> --prelude=<fileprelude>
[--max=<number>] [--encoding=<encoding>] [--mutex=<number>]
[--solver=<solver>] [--ct=<bool>] [--0i=<boo0l>]

where <filename> and <fileprelude> are, respectively, the IF problem to be analysed and the
prelude file, and each option is described as follow:

e max: maximum depth of the search space up to which SATMC will explore (the parameter
max can be set to -1 meaning infinite, but in this case the procedure is not guaranteed to
terminate); by default it is set to 11.

e encoding: the selected SAT reduction encoding technique (currently implemented are the
linear encoding [1] and two graphplan-based encodings, one using the backward chaining

AVISPA v1.0 User Manual



3.2 Analysing a IF Specification 60

schema [3] and the other one applying the explanatory frame schema); it can be set to either
linear, gp-bca or gp-efa (default value).

e mutex: level of the mutex relations to be used during the SAT-reduction; if set to 0, then
the abstraction/refinement strategy provided by SATMC (see [2] for more details) is en-
abled; otherwise the abstraction/refinement strategy is disabled and the static mutexes are
generated; moreover if mutex is set to 2 and the encoding gp-bca has been selected, then
also the dynamic mutexes are computed.

e solver: the selected state-of-the-art SAT solver (Chaff [13], SIM[11], and SATO [17] are
currently supported); it ranges over the values chaff (default value), sim, and sato.

e ct: a Boolean parameter for enabling or disabling the compound typing assumption pre-
sented in Deliverable 3.2 [6] (see also section 2.1.1); by default it is set to true.

e oi: a Boolean parameter for enabling or disabling the optimised intruder model presented
in [4]; by default it is set to true. Disabling such an option can be useful to experiment the
effectiveness of the optimised intruder model.

Notice that expert users can change the default values associated to the above options by acting
on the bin/backends/satmc.config configuration file.

3.2.4 Using TA4SP Given an initial state, the TA4SP tool computes either an over-approximation
or an under-approximation of the intruder knowledge by means of rewriting on tree languages
in a context of unbounded number of sessions. The TA4SP tool uses the tree automata li-
brary Timbuk 2.0 (developed by Th. Genet IRISA, Rennes France and available at http:
//www.irisa.fr/lande/genet/timbuk/) to perform the computation of the intruder knowledge
(over or under approximated).

An over-approximation may lead to positive proofs of secrecy properties on the studied pro-
tocol for an unbounded number of sessions, but TA4SP requires a special initial state and abstrac-
tions presented in Paragraph 3.2.4. Otherwise, in the over-approximation context, TA4SP can
only conclude that secrecy properties are safe for the given initial state.

In an under-approximation context, without any optional abstractions, the tool may show
that the protocol is flawed for a given secrecy property.

To verify a protocol with TA4SP, the empirical strategy to apply is the following:

1. The user computes an over-approximation and check secrecy properties.

2. If the first step does not allow to ensure secrecy then the user successively computes under-
approximations until obtaining an attack in a reasonable time.

AVISPA v1.0 User Manual


http://www.irisa.fr/lande/genet/timbuk/
http://www.irisa.fr/lande/genet/timbuk/

3 ADVANCED USER SECTION 61

However, this empirical strategy does not always lead to the expected result. Indeed, an
inconclusive result using an over-approximation does not imply that there exists a real attack.

Up to now, TA4SP does not handle sets and conditions and verifies only secrecy properties
with a typed model.

The following paragraph describes the TA4SP options which are very useful to specify precisely
the kind of verification a user wants to do.

TA4SP Options The options below are used by the binary tadspv2 (at bin/backend/TA4SP).
However, to use TA4SP from the avispa script, the user will have to set these options in the
ta4sp.config file.

e —-level <integer> (level=<integer> in tajsp.config): When this option is initialised
to 0, an over-approximation will be computed. With a number greater than 0, an under-
approximation is computed and this number corresponds to the number of times that rewrit-
ing is applied on the tree languages computed by TA4SP.

e ——2AgentsOnly (abstractions=<boolean> in ta4sp.config): This option is very useful to
improve time computations. This option provides a specification in which there are only
two agents (the intruder and an honest agent). If secrecy properties are verified in this
model then they are verified in the specified model (IF specification). However, if there is
an attack then it may be a false one due to the abstractions done. Another interesting point
is when an initial state specify:

— a session between honest agents and

— all possible sessions where the intruder plays at least one of the role (for example in
NSPK, (Alice played by a, Bob played by b), (Alice played by a, Bob played by i) and
(Alice played by i, Bob played by b)),

and when the given secrecy properties are verified with TA4SP. In this context, the given
properties will be verified for any sessions.

TA4SP QOutputs As seen in the previous paragraph, several outputs are possible depending on the
options used and the protocol to check. These following examples illustrate the following cases:

1. Secrecy verified in an over-approximation context;
2. Secrecy not verified in an over-approximation context;
3. Secrecy violated in an under-approximated context;

4. Attack not yet found in an under-approximated context.

AVISPA v1.0 User Manual



3.2 Analysing a IF Specification

62

These examples about ta4spv2 runs concern the two protocols: Needham Schroeder Public

Key protocol (NSPK.if) and its corrected version (NSPK-fix.if).

1. ./tadspv2 --2AgentsOnly --level O NSPK-fix.if:

SUMMARY
SAFE

DETAILS
TYPED_MODEL
OVER_APPROXIMATION
UNBOUNDED_NUMBER_OF _SESSIONS

PROTOCOL
NSPK-fix.if
COMMENTS
TA4SP uses abstractions ’2AgentsOnly’

For the given initial state, an over-

approximation is used with an unbounded
number of sessions.

Terms supposed not to be known by the
intruder are still secret.

2. ./tadspv2 --2AgentsOnly --level O NSPK.if:

SUMMARY
INCONCLUSIVE

DETAILS
OVER_APPROXIMATION
UNBOUNDED_NUMBER_OF _SESSIONS
TYPED_MODEL

PROTOCOL
NSPK.if
COMMENTS
TA4SP uses abstractions ’2AgentsOnly’

Use an under-approximation in order to
show a potential attack.

The intruder might know some critical
information

AVISPA v1.0

User Manual



3 ADVANCED USER SECTION 63

3. ./tadspv2 --level 7 NSPK.if:

SUMMARY
UNSAFE
DETAILS
UNDER_APPROXIMATION
PROTOCOL
NSPK.if
COMMENTS
In our model, there is a potential attack.

The intruder may know some critical
information

4. ./tadspv2 --level 3 NSPK.if:

SUMMARY
INCONCLUSIVE
DETAILS
UNDER_APPROXIMATION

PROTOCOL
NSPK.if

COMMENTS
Use a greater bound or check the protocol in
an over—approximated context.

3.3 The Standard Output Format

All back-ends of the AVISPA tool have the same output format. Based on this format a tool
may be used for graphically representing an attack as a sequence of message exchanges. Such a
graphical tool is not distributed in this light package, but will soon be supplied in a more complete
version.

As a consequence, if you plan to add your own verification tool to the AVISPA tool, we
recommend to follow the following output syntax.

% AVISPA output format BNF
b

AVISPA v1.0 User Manual



3.3 The Standard Output Format 64

fh ————m———————- the following symbols are assumed:
% ident a string
% int an integer number
% float a floating-point number
% msg a string describing a message
% goalDescription a string describing a goal
% msg_ident a constant (initial lower case letter)
yA or a variable (initial capital letter)
/S ——
comment ::=
u%n msg
OQutput ::=

Summary Protocol Goal BackEnd Comments? Statistics Trace

Summary ::=

"SUMMARY" Result

Result ::=

Conclusive
Inconclusive

Conclusive ::=

"SAFE" ConclusiveDetails
"UNSAFE" ConclusiveDetails

ConclusiveDetails ::=

"DETAILS" (ConclusiveExplanation)+

ConclusiveExplanation ::=

Inconclusive ::

"ATTACK_FOUND"

"STRONGLY_TYPED_MODEL"

"TYPED_MODEL"

"UNTYPED_MODEL"

"BOUNDED_NUMBER_OF _SESSIONS"
"BOUNDED_NUMBER_OF _SYMBOLIC_SESSIONS"
"BOUNDED_SEARCH_DEPTH"
"BOUNDED_MESSAGE_DEPTH"

AVISPA v1.0 User Manual



3 ADVANCED USER SECTION

65

"INCONCLUSIVE" InconclusiveDetails

InconclusiveDetails ::=

"DETAILS" (InconclusiveExplanation)+

InconclusiveExplanation ::=
"TIME_OUT"

| "MEMORY_OUT"

| "NOT_SUPPORTED"

| "OVER_APPROXIMATION"

| "UNDER_APPROXIMATION"

Comments ::=
"COMMENTS" msg*

Protocol ::=
"PROTOCOL" ident

Goal ::=
"GOAL" ident

BackEnd ::=
"BACKEND" ident

Statistics ::=
"STATISTICS" LabeledStat+

LabeledStat ::=

StatLabel ShortStat UnitLabel

StatLabel ::=
ident

UnitLabel ::
ident

ShortStat ::
float

Trace ::=
"ATTACK TRACE" Step+

Step ::=
StepNumber? Agent -> Agent

: Msg

AVISPA v1.0

User Manual



3.3 The Standard Output Format

66

StepNumber ::=
lnt " A n

Agent ::=
"(" ident "." SessionNumber ")"
| nin

SessionNumber ::=
int

Msg ::=
MSg (u,u MSg)*
| Msg ("." Msg)*
| ident "(" Msg ")"
| "(" Msg ")"
| msg_ident

AtSe.

An example of output is given in Section 2.2.4, for the protocol NSPK-KS analysed by CL-

AVISPA v1.0

User Manual



A XEMACS MODE 67

A XEmacs mode

A mode for editing, compiling and analyzing protocol specifications written in HLPSL is available
for XEmacs. This mode can either be installed directly by the avispa package or an archive file
can be downloaded separately at http://www.avispa-project.org/software.html.

A.1 Installation

If the XEmacs mode is installed through the avispa package, one only has to specify repositories
for the different type of files:

e protocol specification files in HLPSL edited by the user;
e Intermediate Format files generated by the compiler;

e ATK files that are output of the avispa backends.

If a separate installation of the mode is scheduled, one should download the tar archive. The
procedure is then:

tar -xzvf avispa-mode.tgz
cd temporary-avispa
make install

If the shell variable AVISPA_PACKAGE is not set, the different target repositories for the avispa files
are asked. Otherwise the repositories for the global files are automatically inferred from the value
of this variable, as $AVISPA_PACKAGE/emacs for the XEmacs mode files and $AVISPA_PACKAGE/bin
for the path to the tools (the backends and the hlpsl12if translator).

It is assumed that one has a working version of XEmacs to compile the mode files. This means
that it is currently not possible to install the mode on a server that does not have XEmacs.
The init.el file of the user is changed to auto-load the avispa mode when opening an avispa
related file (suffixed by hlpsl, atk or if). The changes also automatically add the path to
the Emacs repository where the mode files are. This repository does not have to be a global
one.

A.2 Usage

A.2.1 First steps... The Avispa XEmacs mode permits to specify and analyse protocol spec-
ifications in an integrated environment.

The usual starting point of analysis is the opening of a hlpsl file. The Avispa mode, once
correctly installed, automatically detects this kind of files on account of its suffix 7 .hlpsl”.
Several buttons then appear on the menubar:

AVISPA v1.0 User Manual


http://www.avispa-project.org/software.html

A.2 Usage 68

AVISPA | << | Process file | == | Update

These buttons have the following role:

e | AVISPA |permits to open the Avispa menu to customize the mode and change the backend
as well as its options;

e | <<|and [>>] permit to navigate among the different files (”.if”, ”.atk”) related to the
specification of a protocol;

° ’Process ﬁle‘ permits to launch either the hlpsl2if compiler on the current HLPSL buffer
or the current backend on the current buffer.

e When a tool is launched asynchronously with XEmacs, the | Update | permits to refresh the
content of the current buffer once the tool has terminated.

A.2.2 The Avispa Menu The Avispa menu permits to change the behavior of the tools when
analyzing a specification. Before describing the possible options, its first use is to select a specific

backend for the analysis of a IF specification (button | Backends):

: Options - i
 Backends I | # CL Atse
Customize - 0fmc
" Help - aatkC

- 1AASP

The item permits to access to the customization of the variables in the 'avispa-
tools group (the most useful ones). The customization permits to change some default values

permanently, see Section A.3 for more information on this topic.

The permits to launch a small help file.

A.2.3 The options This submenu is accessed via the of the Avispa menu. There
are two kinds of options:

e The " Avispa” options which relate to all backends and have to be handled by all tools;

e The tool-specific options, each related to a specific backend.

AVISPA v1.0 User Manual



A XEMACS MODE 69

The former are immediately accessible in the Options submenu, while the latter are accessible
via the ‘More Options‘ button. Both kind of options are described in previous sections of

this manual, but for the option which, if unselected, suppresses the hlpsl2if compiler
warnings on the type of constants. Note that setting an option through this menu lasts a whole
session (7.e. until XEmacs is closed).

A.2.4 Navigation The avispa mode keeps internally a current state that takes into account
both the current file and the current tool that will be applied on the current file through the
Process file button. This permits to navigate among the different files using the [ <<]and | >> |
buttons.

The button. If the current file is an ATK file, it changes to the corresponding IF file.
If the current file is an IF file, it changes to the corresponding HLPSL file.

The button. If the current file is an HLPSL file, it changes to the corresponding IF file.
If the current file is an IF file, it changes to the ATK file corresponding to the current backend.

The action in other cases depends on the value of the Navigation Button Wrap variable.
The possible behaviors are explained in Section A.3.2.

A.3 Customization

The avispa mode may be customized through the command:
M-x customize
You may then enter one of the following:

e avispa-project permitting access to all other variables;
e avispa-tools containing generic options that are explained in Subsection A.3.2;

e avispa-hlpsl2if, avispa-atse, avispa-ofmc, avispa-satmc and avispa-tad4sp provide
another way to change the options of the backends and of the translator. It also permits
to save options from one session to another. It is also possible to change the names of the
executable launched upon calling a tool (the translator or a backend).

Note that the ’AVISPA ‘ — ’ Customize ‘ button permits to directly access the avispa-tools
group of variables.

AVISPA v1.0 User Manual



A.3 Customization 70

A.3.1 The avispa-project group This is the global group of variables related to the avispa
mode. Its main use is to present the Avispa Project, since most variables are member of the
avispa-tools group. It permits to set the Use Abbrev Mode that controls whether abbreviations
should be launched when accessing a new buffer with the Avispa mode.

The description of this variable also contains the abbreviations defined by default.

A.3.2 The avispa-tools group A first subset of the variables in the avispa-tools group
concerns the directories where the files are to be found.

e Tools Path: This is the repository where the tools of the Avispa Project are. This variable
defaults to $(AVISPA PACKAGE) /bin or to the directory entered in the installation of the
XEmacs mode. Note that the full path to the executable used is constructed dynamically
from the value of this variable and from the name of the executable.

e Protocols Hlpsl Repository Path: This variable specifies the repository containing
the HLPSL specifications. It is used when calling the hlpsl2if compiler to construct the
full path to the protocol specification. It is also used when navigating among files (see
Section A.2.4). This path should not end with a slash, otherwise XEmacs may get confused
during the navigation, and opens the same file twice (which is unnecessary).

e Protocols If Repository Path: This is the equivalent of the Protocols Hlpsl Repos-
itory Path variable with regards to the Intermediate format files. It is also used by the
hlpsl2if compiler to determine the full path to the output file. compiler.

e Protocols Results Repository Path: This is the equivalent of the Protocols Hlpsl
Repository Path variable with regards to the resulting result files (suffixed by ”.atk”). It
is also used to determine the full path to the auxiliary output files of a backend. Currently,
only samtc and tadsp generate such files that contain statistics on the analysis.

The second subset of variables in the avispa-tools group concerns the behavior of XEmacs
when calling the translator or a backend.

e Synchronous Compilation: This variable controls whether XEmacs shall spawn a new,
concurrent process to compile an HLPSL specification or if it should wait the result of the
compilation before resuming execution. If it is set to a non-nil value (e.g. t), it enables the
automatic jump to the corresponding Intermediate Format buffer if Fetch Result is also
non-nil;

e Synchronous Validation Set this value to true if you want XEmacs to wait for the
result of the backend before resuming execution. This enables the automatic jump to the
corresponding Result buffer if Fetch Result variable is also set to true.

AVISPA v1.0 User Manual



A XEMACS MODE 71

The drawback is that XEmacs will hang if the backend does not terminate. Note also that
Ofmc is not sensitive to this value, and will always be launched asynchronously.

When a backend or the compiler is launched asynchronously, one need to
use the navigation buttons| <<| and|>>]to go to the result buffer. Once
in the right buffer, one should use| Update| to see the result. This should
be done only once the tool has terminated.

e Fetch Result: Set this value to nil if you do not want the mode to automatically display
the result of a process, i.e. compilation or verification. There is no automatic fetching when
the process spawned is not synchronous with XEmacs. This is due to a race condition that
would often result in XEmacs displaying an out-of-date version.

e Navigation Button Wrap: The variable permits to define the behavior of the
button when visiting an HLPSL buffer and of the button when visiting a result buffer.
If set to nil, these buttons will produce no effect. If set to any other value, the button
permits to jump directly from an HLPSL buffer to the corresponding result buffer. The
name of this buffer is computed with respect to the backend that would be used for next
analysis of a IF buffer. Conversely, the permits to jump directly from a result file to
the corresponding HLPSL specification.

These two buttons do not launch any application nor update the content of a buffer visiting
a file.

AVISPA v1.0 User Manual



72

B HLPSL Semantics

B.1 Preliminaries

The semantics of HLPSL is based on the Temporal Logic of Actions [12] (TLA, for short) a
powerful logic which is well-suited to the specification of concurrent systems like security protocols.
TLA itself has an intuitive and easily understandable semantics, making it a formalism that
protocol designers and engineers can find accessible.

Although TLA allows for the description of parallel processes, in the context of HLPSL we
model protocols by providing an interleaving semantics. The latter is obtained by restricting the
capabilities of the Intruder (see Section B.2.3): in the case of the Dolev-Yao [10] intruder model,
for instance, we make the intruder send messages one at the time.

B.1.1 The Transition System. TLA specifies a transition system by describing its allowed
behaviours by means of a single formula of the form:

System(A) = Inits(A) A ONext(A, A)

where A is the set of state variables ranging on a domain D* (A’ refers to this set of variables
in the next state), Inits and Nezt are formulae representing the initial states and the next-state
relation, respectively. The above formula corresponds to a transition system 7 = (3,7, —),
where Y, the set of states, is a set of total assignments ¢ : A +— D; 7T C ¥ is the set of initial
states, that is, for each o € Z, |& ,,Inits(A); finally, -=C ¥ x ¥ is the transition relation such
that o1 — o9 iff | 5,00, Neat(A, A") where o' = {(2/, d) | (z,d) € o}.

For a sequence of states m = 0g, 01, ..., we define 7(i) = o4, 7" = 04,0441,..., and T<; =
00,01,...,0; for i = 0,1,..., and we say that w is a behaviour in 7T iff 0; — o0;,1 for each
i=0,1,...

B.1.2 Events and Actions. A state predicate is a TLA formula on a role’s state variables
and constants. Examples of valid state predicates include X = 5 and S = done. A transition
predicate is similar but may include primed variables. If V' is a tuple of state variables and V'’ the
correspondent tuple of primed state variables, then we define the set of actions as those transition
predicates p(V, V') with the property that VV : 3V’ : p(V, V').> Actions may therefore include
stuttering steps. A basic event is a conjunction of transition predicates, at least one of which is
of the form p(V’) # p(V), where V is a tuple of variables and p(V) is a state predicate. This
definition ensures that events are non-stuttering, i.e. at least one state variable changes.®

4For simplicity we consider a single domain for all the variables. However what follows can be easily extended
to multi-domain.

5Notice that, the satisfaction of this property causes the transition relation to be total.

®Notice that, p(V') # p(V) = V'’ # V can be simply derived from V' = V = p(V') = p(V) by means of

contraposition.

AVISPA v1.0 User Manual



B HLPSL SEMANTICS 73

B.1.3 Transitions. The next-state relation of basic roles is defined through a set of transi-
tions rules within the transition section. HLPSL distinguishes between two different types of
transitions, respectively called spontaneous actions (denoted by the —-|> arrow) and immediate
reactions (specified using the =|> arrow). Both kinds of transitions are preceded by a label, which
may be an alphanumeric string starting with a lower case letter and ending with a period. It is
worth pointing out that these labels carry no information about the order in which the transitions
fire. They are merely names.

Spontaneous actions relate a state predicate on the left-hand-side (LHS) with an action on the
right-hand-side (RHS). Intuitively, a spontaneous action transition sp --|> act expresses that,
whenever we are in a state that fulfils state predicate sp, we may make a transition labelled by
the action act into a new state. Note, however, that we do not require that this transition fire
right away. When and if it does fire, we obtain the new state by taking the old state and applying
any side effects that act might produce; that is, any state variables not affected by act remain
the same. We call such transitions “spontaneous” because, although they are enabled whenever
state predicate sp is true, they convey nothing about when they must fire.”

Immediate reaction transitions, on the other hand, have the form event =|> act and relate a
trigger event, event, on the LHS with an associated action, act, on the RHS. This expresses that,
whenever we take a transition that satisfies the non-stutter event predicate event, then we must
immediately (more precisely, simultaneously) execute action act. Hence as soon as event holds,
we obtain the new state by taking the old state and applying any side effects that act might
produce; that is, any state variables not affected by act remain the same.

B.1.4 Communication, Channels, and Signals. Communication takes place over channels,
which are themselves merely variables with values like any other. By convention, we generally
assign channels convenient names like SND and RCV and then write SND(Msg) and RCV(Msg).
This is, however, merely a shorthand. The former action, assuming that it appears on the
RHS of a transition, meaning it is a write action, is a short form for SND’=Msg. The latter,
assuming that it appears on the LHS of a transition and is therefore a read event, is short for
(RCV_flag’ /= RCV_flag) /\ (RCV’ = Msg), where RCV_flag is a binary flag which is toggled
each time a new message arrives on channel RCV. Recalling our restriction that events contain at
least one predicate of the form X’ /= X, we can see that the former is an action and the latter
an event.

HLPSL also supports signals, that is, asynchronous events (assuming they occur on the LHS
of a transition). A signal can be seen as a channel through which no information is sent. Sig-
nals in HLPSL are of the form SGNL(). As for channels, the latter is just a shorthand for

"It can be the case that, at a given point, a spontaneous transition is enabled but does not fire directly and,
meanwhile, some other transition is applied such that its effects make the spontaneous transition no longer enabled.
In that case, the latter will not be able to fire anymore, unless it becomes enabled once again thanks to the effects
of some other transition.

AVISPA v1.0 User Manual



B.2 Formal Semantics 74

(SGNL_flag’ /= SGNL_flag), meaning that something has changed in that particular channel
(but no messages have been sent through it, since there is no assignment SGNL_flag’=Msg as for
normal communication channels).

In the rest of this section we will show how to express a security protocol specified in HLPSL
as a TLA formula. We will formally give the meaning of checking that a security protocol achieves
its security properties under an hostile environment.

B.2 Formal Semantics

B.2.1 Messages. We begin by specifying the structure of messages and the properties of the
operations on the set Msg of all messages. Particularly, we will focus on pairing pair(M;, My) =
M. M4 and asymmetric encryption, acrypt(K, M) = {M }k, but we can easily extend this model
of messages to include other operators like symmetric encryption, exponentiation, XOR, and their
associated properties.

In general, HLPSL allows for the declaration of algebraic equations that specify an equa-
tional theory ~. Let ) be the signature from which Msg is constructed, the interpretation of
HLPSL is required to be a quotient interpretation of a free term algebra 7 g modulo the equa-
tional theory ~ (see [16]). For instance, ~ could include an equation stating that pairing is
associative Pair(Pair(ml, m2), m3) ~ Pair(ml, Pair(m2, m3)), equations expressing properties
of cryptographic algebraic operators (e.g. the associativity and commutativity properties of the
XOR operator, properties on the inverse of an asymmetric key, like inv(inv(k)) = k), etc.

B.2.2 HLPSL Roles. In this subsection, we show how HLPSL roles are mapped into TLA.

Figure 3 shows the structure of a basic role (denoted with B) and of a composed role (denoted
with P) in HLPSL, where W and W p are the sets of parameters, pl € Up is the agent playing B,
Ry, R, ..., Ry, are the component roles (for brevity, sequential composition, the loop construct
and the acceptance conditions are not discussed), Ap and Ap are the sets of local variables, and
Qp and Qp are the sets of owned variables. Moreover, even if it is not depicted explicitly by
Figure 3, let T, Tp be the sets of fresh variables which are updated by the role.

In the rest of this section, given a role named R, we denote with R its entire HLPSL definition
which includes the roles signature (the name, R, and the parameters, that we denote with ¥(R)),
the player (for basic roles), the local and owned variables (that we denote with A(R) and Q(R)
respectively), Initg (that we denote with Init(R)), and the set of transitions or the compositions
defined therein. Same goes for the set of fresh variables, denoted with T(R). Moreover, if R is
a basic role, in R the set W(R) of its parameters is augmented with a new variable U that will
later be instantiated with a unique number. For instance, in a parallel composition this allows to
distinguish between two (or more) identical instances of the same basic role.

As a first preprocessing step, we uniformly rename the roles local variables in order to avoid

AVISPA v1.0 User Manual



B HLPSL SEMANTICS 5

role B(Vp) played by pl def= role P(VUp) def=
local Ajp local Ap
owns (g owns {1p
init Initg init Initp
transition composition
lbl. €U =|> act1 Rl VANRRAN Rm
end role
b, . ev, =I1> act,
end role
(a) Definition of a basic role (b) Definition of a composed role

Figure 3: HLPSL roles: generic structure.

possible name clashes with the environment. To aid readability, we still denote with A(B), A(P)
the sets of local, renamed variables.

Since immediate reactions can also be used to express spontaneous actions, we focus here only
on the formers. We will proceed inductively translating to TLA, starting with basic roles B and
then giving the translation of the composed role P in terms of the translation of its components,

Ri, Ry, ... Ry,

In order to describe the TLA translation of a basic role, let us first define ¢r; to be the j-th
transition rule of the basic role (i.e., tr; £ ev; =1> act;), Y(tr,B) to be the set of variables that
are freshly generated by the transition tr in B (i.e., Y(tr,B) £ {v | v in Y(B), v" occurs in tr}),
and Used s, (with j =1,...,n) be TLA variables each one devised to model a set that keeps
track of those fresh values that have already been generated in executing the transition ¢r; (with
j=1,...,n) of B. Moreover, let Usedg be the TLA variable representing the set that keeps track
of those fresh values that have already been generated by the role B. The TLA translation of a
basic role is then given by Figure 4. Notice that also a channel Ch can be owned by a role. In
such a case, Mod(Ch, B) is intended to be applied on transitions in which the channel macro has
been replaced with its appropriate conjunction of predicates (see section B.1.4).8

Intuitively, formula (1) of Figure 4 states that initially Init(B) holds, and in every step the
above conjunction of formulae denoted with Nezt(B) must be satisfied. Namely, (2) states that if
an event is triggered, then the changes specified by the corresponding action take place, the fresh
variables updated by the transition are assigned to different values that have never been used
as fresh value by this transition; although it is not explicitly stated, the player’s knowledge is
implicitly extended with all the terms that can be derived by analysing” the messages received, and

8However, it is recommended to avoid ownership of channels since it can be cause of clashes with the TLA
formulae declared for the intruder.

9For instance, if an agent knows a symmetric key k and receives a cyphertext { M}, then M is added to the
knowledge.

AVISPA v1.0 User Manual



B.2 Formal Semantics 76

TLA(B) = Init(B) A O Next(B) (1)
where Next(B) is defined as:

A /\j ev; = A act; (2)
A /\ (v1,02 in Y(tr;,B)) V1 7é V3
A /\ (v in Y(tr;,B)) U §é U86d<3’t,n].> Nv € US@d(B,tTﬁ

A\ G Used s iy 0 Used g ir,y = 0 )
A /\ (w in Q) W #w = Mod(w,B) (4)
N Usedp = Uj Used ,ir)) (5)
A Usedg C Usedg (6)

with

Mod(z,B) = \/j {ev; | ©" occurs in tr;}. (7)
Figure 4: Translation of a basic role in into TLA

we assume the player to be always able to compose the messages he is going to send. Conjunction
(3) imposes that the sets of fresh values issued by different transitions are disjoint. Besides this,
(4) states that if one of the variables owned by the role changes, then the variable is actually
modified by this role. It is our convention that if a role owns a variable then this variable is never
modified by any role “outside” the current one. Finally, (5) defines a TLA variable representing
all the fresh values used by the role B and (6) imposes that such a set grows up monotonically.

An agent may simultaneously participate both in different roles and in different sessions of
the protocol. In this case, the two role instances could share some internal variables of the agent.
This variable sharing is not done through channels, but it is a straightforward consequence of
using the same TLA variable in both the formulae representing the roles that share the variable.
In this version of the AVISPA Tool, only the sharing of variables of type set is allowed.

Note that a transition that has to refer to the already known value of a variable will use
the name of this variable, without prime sign, in any side of the transition. Viceversa, when a
transition has to assign a value to a variable will use the name of this variable with prime.

Lastly, let B be a basic role. With B? we denote the role obtained from B by replacing the
variable U with the value p and by replacing each variable A € A with \,. On composed roles,
PP denotes P itself, acting as the identity function. This is done in order to keep same basic role
instances distinct when they are involved in parallel compositions.

AVISPA v1.0 User Manual



B HLPSL SEMANTICS 7

The TLA translation of the parallel composition of Ry, R, ..., R,, is as follows:

TLAP) = A\ TLA(RY) (8)
A Init(P) (9)

AO A /\(w in Q(P)) w #w = Mod(w,P) (10)

A Noin sy N # A= Mod(\,P) (11)

A m ie1 Usedgr: = 0 (12)

A Usedp = U 2y Used i (13)

where p1, pa, ..., pm are the positions of TLA(RY'), TLA(RY?), ..., TLA(RPr) respectively in the
tree of the main role at the topmost-level of the HLPSL hierarchy, and °

Mod(z,P) = ™, Mod(z, RY").

It is thus defined as the conjunction of each component role TLA(RY") (see (8)) and some terms
accounting for extra initial constraints (see (9)), taking ownership of variables (see (10)) and
freshness (see (12)). Namely (10) states that if a variable is owned by P then the value of such
variable can be modified only by applying transitions of any of the component roles RY*. Same
goes for local variables (11): a local variable can be modified only by any of the component roles.
For what concerns freshness, (12) imposes that the sets of fresh values issued by all roles RY* are
disjoint, and (13) defines a TLA variable that keeps track of those fresh values that have already
been used by P, i.e. the union of the fresh values used by each RY*.' Moreover, it is immediate
to see that ™, Q(RY") C Q(P), U™, A(RY") C A(P), and U™, T(RY') C Y(P).

The TLA translation of sequentially composed roles, which we omit here, is analogous. One
must augment the translation with an auxiliary variable recording which of the roles is executing
and take into account the acceptance conditions.

B.2.3 Intruder Model. We formalise the capabilities of the intruder as a set of rules the
intruder may execute. We focus here on the well-known Dolev-Yao (DY) intruder model of [10]
but note that the definition of alternate intruder models is a simple matter of axiomatically
describing their capabilities. In this way, we can easily model a system in which the intruder has
full DY capabilities over certain communication channels, can only listen on others, and has no
access to a third set of channels.

The DY intruder controls any channel tagged with the (dy) attribute. Let S and R be the
number of sending and receiving DY channels used in a given protocol. In the sequel, SND; and

10Notice that, the sets of basic and composed roles are disjoint. Therefore it is immediate to select the appropriate
Mod predicate to be applied on a given role.
'Notice that, the monotonicity of Usedp simply follow by the monotonicity of each Usedp»i .

AVISPA v1.0 User Manual



B.2 Formal Semantics 78

RCVy (with 1 <4 < §and 1 <k < R) refer to sending and receiving DY channels, respectively.
The DY intruder reads every sending channel SND; (namely, it reads every message that the
agents write on these channels), analyses the messages, (i.e. generates terms and messages based
on them), and inserts the composed messages into any receiving channel RCV. Unlike knowledge
of roles, the “knowledge of the intruder” (IK') is made explicit in the formulae of Figure 5 and
Figure 6. Namely, the set IK contains all the terms that the intruder may compose (with respect
to his knowledge). The initial value of this TLA (set) variable is set explicitly in HLPSL: it is the
union of the sets defined in the intruder_knowledge = {...} declarations, and monotonically
increases according to the formulae of Figure 5: as the intruder reads a new message from a
channel SND;, (14), as he analyses his knowledge by decomposing a pair into its components,
(15), or decrypting encrypted terms if he possesses the appropriate key, (16), or as he composes
new terms — generating pairs, (17), encrypting a message using a known key, (18), or generating
fresh terms (19).'2 Part of the intruder behaviour is thus formalised by the formula of Figure 6.

Read(SND;) = 3emsy A SNDy(m) A IK = IK U {m} (14)
ASplit = 3 imoemsy A pair(ml,m2) € IK A IK = IK U{ml, m2} (15)
AAdec = Bpmemsy N acrypt(k,m) € IK A inv(k) € IK A IK = IK U {m} (16)
GPair =  Jpimoemsy A ml € IK A m2 € IK A IK = IK U {pair(m1,m2)}(17)

GAcrypt = Fpmemsy AN k€ IK A m e IK A IK = IK U{acrypt(k,m)} (18)
GFresh = Juepmsy A o ¢ [Used N o€ [Used N IK = IK U{z} (19)

Figure 5: Dolev-Yao intruder knowledge formulae

It must be noted that, according to the definition given in Figure 6 , the intruder is able to send

Intruderpy = O AIK # IK =V \/$_, Read(SND),)
Vv ASplit vV AAdec
V GPair VvV GAcrypt V GFresh
A NEL(RCV(msg) = msg € IK)

Figure 6: Dolev-Yao intruder behaviour

messages on more than one channel at the same time. Since we provide an interleaving semantics
for HLPSL, that behaviour needs to be restricted by adding the constraint depicted in Figure 7.

12Notice that, the TLA variable IUsed keeps track of those fresh values that have already been generated by
the intruder.

AVISPA v1.0 User Manual



B HLPSL SEMANTICS 79

Interleavingpy = R, (RCV,ﬂag’i # RCV flag; A /\fZL#iRCVﬁag’j = RCV,ﬂagj)
Figure 7: Dolev-Yao intruder behaviour: necessary condition for interleaving semantics.

However, the formula in Figure 7, alone, does not guarantee the interleaving semantics: in
fact, the HLPSL syntax allows to specify two left-hand sides of two transitions (within the same
basic role) such that they both can become enabled, allowing both transitions to fire. In that
case, the interleaving semantics is preserved by adding a “trigger” to the left-hand sides in order
to enable one transition at the time. The trigger may be, for instance, a signal.!3

B.2.4 Freshness. In the previous paragraphs we showed that each role Role keeps track in the
set Used goie Of those fresh values that have already been generated by itself. In doing this Role
also guarantees the freshness of these values for what concerns its execution. The intruder makes
the same for itself too and therefore we can guarantee the freshness of the whole system simply
by enforcing the following;:

Nonce_Prop = O Used(TR)N IUsed = ()

where TR is the name of the role at the topmost-level of the HLPSL hierarchy.'*

B.2.5 Goals. In HLPSL, goals are specified as temporal formulae built on top of goal facts
that are explicitly asserted by basic roles in executing their transitions. To assert a goal fact
corresponds to assigning the truth value to a HLPSL boolean variable representing the goal fact.

Let T" be the collection of such boolean variables, TR be name of the role at the topmost-level
of the HLPSL hierarchy, and 7 = (3,7, —) the transition system represented by the following
TLA formula

A TLA(TR)
A /\ (v in T) /A Y = FALSE (20)
A O (v = TRUE < Mod(v,TR))

where (20) states that a goal fact (i) is initially false and (4i) holds only in those states reached
by those transitions that assert it.

BLet, for instance, RCV(X?)=|>act; and RCV(Z’)=|>act; be two transitions defined within the same role.
In that case, if the intruder sends a message on channel RC'V, both RCV(X’) and RCV(Z’) become enabled,
and both transitions fire at the same time. To avoid such parallelism one needs to rewrite the transitions as
TRIGL () ARCV(X’)=|>act; and TRIG2() ARCV(Z’)=|>acts.

14 Alternatively, we could enforce that all the set of used fresh values are disjoint.

AVISPA v1.0 User Manual



B.2 Formal Semantics 80

Besides this, let m be a behaviour in 7 and ¢ a generic safety temporal formula, then ¢ holds
in 7 at time 4, denoted with (7, 1) = ¢, is inductively defined as in Figure 8.1 A safety temporal

(mi) Ep iff p holds in 7 (%)

(i) -6 i (m0)

(i) =1 Vo it (m,4) = ¢y or (m,4) = ¢
(m,0) = ¢r A gy it (m,0) = ¢1 and (i) = ¢2

(m,i) E ¢ iff i>0and (m,i—1) = ¢
(m,1) = &y iff exists 0 <j <ist. (m7) F ¢

Figure 8: The semantics of safety temporal formulae

formula ¢ is valid on a behaviour 7 in 7, denoted with 7 | ¢, iff (7,0) | ¢. A safety temporal
formula ¢ is universally valid in 7, written 7 = O¢, iff 7 = ¢ for every behaviour 7 in 7.

Let G be the HLPSL safety formula the security protocol is required to satisfy, then we say that
the security protocol (specified in HLPSL) achieves its security properties (expressed in HLPSL

100) il 7 = A (g 1 ) ¥ (9).°

15Tn Figure 8, ¢1 and ¢y are safety temporal formulae and p is a goal fact.
6et ¢ be a safety temporal formula, then V (¢) is its universal closure.

AVISPA v1.0 User Manual



C IF SEMANTICS 81

C IF Semantics

In this section, we formally describe the semantics of the IF. Recall that, as we remarked above,
the translation performed by the HLPSL2IF translator defines a semantics for the HLPSL in
terms of the IF, which provides an alternative to the semantics of HLPSL based on TLA (see
Appendix B).

The basis of the semantics are terms, which are built from the constants and function symbols
of the prelude and the IF files. As it is the case for HLPSL, we assume that all terms are
interpreted in the quotient algebra of the free algebra and the equational theory defined in the
prelude file.

To smoothly integrate the existential quantifier, we assume a set of fresh constants that is
disjoint from all constants in the prelude and if file. For these constants, we assume a function
fresh that maps a state and a set of variables to a substitution that replaces the variables with
constants that do not appear in the given state.

Types Let type be a partial function that yields for every constant and variable the respective
type that has been declared.

Note that our syntax allows also compound types (see Section 2.1.1), e.g.
M : scrypt(symmetric key, pair(nonce, agent))

Such a variable declaration is used when the receiver is not supposed to analyse a certain message-
part according to the protocol. For instance, in the case of the Otway-Rees protocol, A should
send to B a message M that is encrypted with a key K 4 that is shared between A and a trusted
server S. B has to forward this message M to S and cannot read it himself. Hence an intruder,
impersonating A, can send any message in the place of M since B will not try to analyse it. For
a typed model, however, we want B to accept M only if it is of the proper format (according to
the protocol), i.e. if it is an encryption with a symmetric key and the contents after decryption
are also of the proper format. In other words, even though B cannot decrypt the message, we
assume that he can check whether the received message is of the correct type and pattern, and
reject it if not.

Semantically, let op be an n-ary IF operator, M a variable and t,..., ¢, types (atomic or
themselves composed). Then the declaration
M:op(ty, ..., tn)
is equivalent to the declarations
My :tq,...,My : tp

if M; (with ¢ = 1,...,n) are fresh variables (that do not appear in the IF file) and every occurrence
of M in the IF file is replaced with the term op(My, ..., M,).

AVISPA v1.0 User Manual



82

One may hence see composed types as syntactic sugar, but they allow us to write the rules for
an IF file independent of the question of typing, so that the same IF specification can be analysed
with respect to both the typed and the untyped model simply considering or not the signature
and types sections.

Unification We define F-unification on IF terms in the standard way, i.e. unification modulo
the algebraic theory F defined by the equations of the prelude file, only that types have to be
respected.Formally, a unifier of two terms is a substitution, such that the type of every substituted
variable agrees with the type of the term it is replaced with. (In an untyped model, the types are
not considered and hence do not constrain the unification.) As we adopt the standard notion of
sorted unification, we will not go into further details here but refer the reader to [7].

We use the “.” as an associative, commutative, and idempotent operator, i.e. we have:

t1.(to.t3) = (t1.t2).t3
tl.tQ = tg.tl
t.t=1

Note, however, that these three properties work only on facts and not on messages. With these
properties, the operator “.” works as a set constructor for facts, and in the following we will
consequently talk about sets, union, and set difference for facts as a shorthand.

Rule Application Let us denote an IF rewrite rule by means of the triple (I, exVar, r), where
[ is the LHS of the rule, r is the right-hand side of the rule, and exVar is the list of existentially
quantified variables.

A LHS of a rule contains a set of positive and negative facts as well as a set of conditions, i.e. a
set of equalities and inequalities as follows: the IF condition equal(Zy, t2) represents equality of
the terms ¢; and t5, not represents negation of a condition, and < (#1, t5) represents t; < t5. For
a substitution o, we define o = Cond on conditions as expected:

ot =1ty iff ty0 = ty0 (where t; and to are arbitrary terms)
ot <ty iff ti0 < ty0 (where t; and ty are natural numbers)
cEoNY iff ok ¢and o | (where ¢ and ¢ are conditions)
o= ¢ iff not o = ¢ (where ¢ is a condition)

For the LHS [ of a rule, we define the functions PF([) for the positive facts, NF(l) for the negative
facts, PC(l) for the positive conditions (i.e. without not), and NC(1) for the negative conditions.

Figure 9 defines when a rule is applicable to a (ground) state by the function matches that
takes as argument the LHS of the rule [ and yields a function that maps a state s to the set of

AVISPA v1.0 User Manual



C IF SEMANTICS 83

substitutions o such that lo can be applied to s (this set is empty if the rule is not applicable).!”
In there, the predicate ground checks that a given substitution is ground, the function dom
returns the domain of a given substitution, and the function v returns the variables occurring
in a given term. The intuition behind this definition is as follows: we consider every (ground)

matches : Rule LHS — (State — 25ubstitution)

matches | s = {o | ground(o), (21)
dom(o) = v(PF(l)) Uv(PC(1)),

PF(l)o Cs, o= PC(l), (22)

Vp. dom(p) = (v(NF(1)) Uv(NC(1)))\ dom(o), (23)

NF(l)opns=0, opl= NC(1)} (24)

Figure 9: Applicability of a IF rewrite rule

substitution o (see (21)) such that under o the positive facts can be unified with a subset of the
current state (hence PF(l)o is necessarily ground) and the positive conditions are satisfied (see
(22)). Furthermore, for all ground substitutions p for the remaining variables, i.e. those variables
that appear only in negative facts and in negative conditions (see (23)), we postulate that none
of the negative facts under op is contained in the state and none of the conditions is satisfied
for op (see (24)). We recall that the right-hand side of the rule can only contain variables from
the positive facts of the LHS and the existentially quantified variables (which will be replaced by
fresh constants below), therefore all substitutions that result from matches are ground and so are
all successor states. Note also that matches is applied in the same way for attack states (which
are syntactically the same as a rule’s LHS).

Figure 10 describes the semantics of a rule as a state-transition function. In there we use the
applicability check matches. Besides for this check, the conditions and the negative facts of the
rule do not play any role: the transition itself is concerned only with the positive facts of the LHS
of the rule, the existentially quantified variables, and the right-hand side. Intuitively, if the rewrite
rule is applicable to state s (see (25)), then its application leads to a state s’ obtained from s by
removing the facts in the LHS of the rule and by adding those in the right-hand side to the result
(see (26)), where a different fresh constant is generated for any existentially quantified variable of
the rule (see (27)). Note that here the semantics of a rule is defined as a state-transition function
operating only on ground terms, i.e. s cannot contain variables (otherwise the definition of the
transition relation may not behave as one would expect); the resulting s” is then also ground, as
the rules cannot introduce any new variables.

1"Note that 2° denotes the power-set of a set S.

AVISPA v1.0 User Manual



84

[1 : Rule— (State — 25%)

[{1, exVar,r)](s) = {s'|3o,p. o € matches | s, (25)
p = fresh(s, exVar), (26)
s'=(s\ PF(l)o)Urpo} (27)

Figure 10: Semantics of a IF rewrite rule

Attack States and Properties The ground initial state(s) and a transition relation together
define an infinite-state transition system. There are two ways to formulate the goals of the
protocol in IF. The first is to specify attack states (which are syntactically built like the LHS of a
rule). We define that a protocol is secure for an attack state g iff there is no reachable state s such
that matches g s holds. The second way (which is newly added to the IF format and not yet
supported by the back-ends) is to specify temporal formulae. Due to the syntax, all permissible
formulae are safety properties and can thus be checked on finite traces of events. To define the
semantics, we therefore label all transitions of the transition system with the set of goal-relevant
events (e.g. secret) that occurred in that transition. The protocol is secure for the formula ¢
iff every (finite) word w that the transition system accepts satisfies the formula ¢ (as defined in
HLPSL).

AVISPA v1.0 User Manual



REFERENCES 85

References

[1] A. Armando and L. Compagna. Automatic SAT-Compilation of Protocol Insecurity Problems
via Reduction to Planning. In Proceedings of FORTE 2002, LNCS 2529, pages 210-225.
Springer-Verlag, 2002.

[2] A. Armando and L. Compagna. Abstraction-driven SAT-based Analysis of Security Pro-
tocols. In Proceedings of SAT 2003, LNCS 2919. Springer-Verlag, 2003. Available at
Www.avispa-project.org.

[3] A. Armando, L. Compagna, and P. Ganty. SAT-based Model-Checking of Security Protocols
using Planning Graph Analysis. In Proceedings of FMFE’2003, LNCS 2805. Springer-Verlag,
2003.

[4] Alessandro Armando and Luca Compagna. An optimized intruder model for sat-based model-
checking of security protocols. In Proceedings of the IJCARO, Workshop ARSPA, 2004. To
appear in ENTCS, available at http://www.avispa-project.org.

[5] Alessandro Armando and Luca Compagna. Satmc: a sat-based model checker for security
protocols. In Proceedings of the 9th Furopean Conference on Logics in Artificial Intelligence
(JELIA 2004), LNAT 3229, Lisbon, Portugal, September 2004. Springer-Verlag.

[6] AVISPA. Deliverable 3.2: Assumptions on Environment. Available at http://www.
avispa-project.org, 2004.

[7] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[8] D. Basin, S. Médersheim, and L. Vigano. Constraint Differentiation: A New Reduction
Technique for Constraint-Based Analysis of Security Protocols. In Vijay Atluri and Peng
Liu, editors, Proceedings of CCS’03, pages 335-344. ACM Press, 2003. Available at http:
//www.avispa-project.org.

[9] D. Basin, S. Mddersheim, and L. Vigano. OFMC: A Symbolic Model-Checker for Security
Protocols. International Journal of Information Security, 2004.

[10] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Theory, 2(29), 1983.

[11] E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating Search Heuristics
and Optimization Techniques in Propositional Satisfiability. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proceedings of IJCAR’2001, LNAI 2083, pages 347-363. Springer-Verlag,
2001.

AVISPA v1.0 User Manual


www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org

REFERENCES 86

[12] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872-923, May 1994.

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference (DAC’01),
2001.

[14] M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions is NP-
complete. In Proceedings of the 14th IEEE Computer Security Foundations Workshop. IEEE
Computer Society Press, 2001.

[15] SAT. The SAT Live Web Site. http://www.satlive.org.

[16] Sperschneider V. and Antoniou G. Logic, A Foundation for Computer Science. Addison-
Wesley, 1991.

[17] H. Zhang. SATO: An Efficient Propositional Prover. In W. McCune, editor, Proceedings of
CADE 14, LNAI 1249, pages 272-275. Springer-Verlag, 1997.

AVISPA v1.0 User Manual


http://www.satlive.org

	Introduction
	Installation Procedure
	How to use the AVISPA tool?
	About this Manual
	Contact

	User Section
	Specifying Protocols: HLPSL
	HLPSL Syntax
	a. Lexical entities.
	b. Structure of a HLPSL specification.
	c. Definition of roles.
	d. Definition of a role.
	e. Declarations in roles.
	f. Declaration of local variables.
	g. Declaration of owned variables.
	h. Declaration of constants.
	i. Initialisation of local variables.
	j. Declaration of the acceptance state.
	k. Declaration of intruder knowledge.
	l. Transitions in basic roles.
	m. Actions and reactions.
	n. Composition of roles.
	o. Instantiation of a role.
	p. Declaration of goals.
	q. Declaration of types of variables.
	r. Declaration of types of constants.
	s. Types and compound types.
	t. Stutter and non-stutter formulas.
	u. Stutter and non stutter expressions.
	v. Predefined equational theories.

	HLPSL Guidelines
	a. Variable/constant names.
	b. Arithmetic.
	c. Old/new values of variables.
	d. Channels.
	e. Goal specification.
	f. Transitions.
	g. Initial value.
	h. Constants.
	i. Messages.
	j. Knowledge.
	k. Sessions generation.

	Example

	Analyzing a HLPSL Specification
	Running avispa
	Generated Errors
	Interpreting the Output
	Example


	Advanced User Section
	Generating an IF Specification
	Automatic Translation from HLPSL to IF
	The IF Specification Language
	a. Lexical entities.
	b. Prelude and IF files.
	c. Section for type symbols.
	d. Section for signature.
	e. Section for variables and constants declaration.
	f. Section for equations.
	g. Section for initialisation.
	h. Section for transition rules.
	i. Section for properties.
	j. Section for attack states.
	k. Section for intruder behaviour.

	IF Prelude File
	Example

	Analysing a IF Specification
	Using CL-AtSe
	Using OFMC
	Using SATMC
	Using TA4SP
	TA4SP Options
	TA4SP Outputs


	The Standard Output Format

	XEmacs mode
	Installation
	Usage
	First steps...
	The Avispa Menu
	The options
	Navigation

	Customization
	The avispa-project group
	The avispa-tools group


	HLPSL Semantics
	Preliminaries
	The Transition System.
	Events and Actions.
	Transitions.
	Communication, Channels, and Signals.

	Formal Semantics
	Messages.
	HLPSL Roles.
	Intruder Model.
	Freshness.
	Goals.


	IF Semantics
	References

