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We present the CAS+ language designed for the easy specification and
verification of security protocols. The objective of CAS+ is to have a lan-
guage as simple as CASRUL [JRV00] and leading to specifications as precise as
HLSPL [CCC+04]. The syntax is essentially the one of CASRUL complemented
with a verification goal declaration close to what is used in HLPSL. Since syntax
of CAS+ is very similar to CASRUL the following manual essentially consists
of adapted excerpts of [JRV00].

1 Structure of a CAS+ protocol specification

The specification of a protocol P comes in six parts. These parts respectively de-
clare identifiers, message sequences, agent knowledge, session instances, intruder
knowledge and verification goals. See Figure 1 for examples. Note that more
examples are available once SPAN is installed on you system in the directory:

<SPAN installation directory>/testsuite/CAS_Protocols

2 Identifiers declarations

The identifiers used in the description of a protocol P have to be declared
to belong to one of the following types: user (principal name), public key,
symmetric key, function, number. The type number is an abstraction for any
kind of data (numeric, text or record ...) not belonging to one of the other
types (user, key, etc.). An identifier F of type function is a one-way (hash)
function. This means that one cannot retrieve X from the digest F (X). The
unary postfix function symbol ′ is used to represent the private key associated
to some public key. For instance, in Figure 1, Kd′ is the private key of D.

3 Messages

The core of the protocol description is a list of lines specifying the rules for
sending messages,

(i. Si →i Ri : Mi)1≤i≤n
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For each i ≤ n, the components i is the step number, Si and Ri are users
(respectively sender and receiver of the message) and Mi (message) is a ground
term over a signature F defined as follows. The declared identifiers as well as
integers are nullary function symbols of F. The symbols of F with arity greater
than 0 are ′, [ ] (for tables access), ( ) (for one-way functions access), ,
(pairing), { } (encryption), ˆ (exponential) and # (xor). We assume that
multiple arguments in ,..., are right associated. We use the same notation
for public key and symmetric key encryption, i.e { } is an overloaded operator.
Which function is really employed shall be determined unambiguously by the
type of the key.

The arrow →i represents the type of channel used to send the message. It
can be one of the following ascii symbols: -> for usual Dolev-Yao channel, =>
for read and write protected channel and ∼> for write protected channel.

Example 1 Throughout the paper, we illustrate our method on two toy exam-
ples of protocols inspired from the one of [JRV00] and presented in Figure 1.
These protocols describe messages exchanges in a home cable tv set made of a
decoder D and a smartcard C. C is in charge of recording and checking sub-
scription rights to channels of the user. In the first rule of the symmetric key
version, the decoder D transmits his name together with an instruction Ins to
the smartcard C. The instruction Ins, summarised in a number, may be of the
form ”(un)subscribe to channel n” or also ”check subscription right for channel
n”. It is encrypted using a symmetric key K known by C and D. The smartcard
C executes the instruction Ins and if everything is fine (e.g. the subscription
rights are paid for channel n), he acknowledges to D, with a message containing
C, D and the instruction Ins encrypted with K. In the public key version, the
privates keys of D and C respectively are used for signing messages instead of
K.

4 Knowledge

At the beginning of a protocol execution, each principal needs some initial
knowledge to compose his messages. The field following knowledge associates
to each user a list of identifiers describing all the data (names, keys, function,
etc.) he knows before the protocol starts. We assume that the own name of
every user is always implicitly included in his initial knowledge.

Example 2 In Figure 1, D needs the name of the smartcard C to start com-
munication. In the symmetric key version, both C and D know the shared key
K. In the public key version, they both know the public keys Kc and Kd. Note
that the number Ins is not declared in D’s knowledge. This value may indeed
vary from one protocol execution to one another, because it is created by D at
the beginning of a protocol execution. The identifier Ins is therefore called a
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fresh number, or nonce (for oNly once), as opposite to persistent identifiers like
C, D or K.

5 Session instances

This field proposes some possible values to be assigned to the persistent identi-
fiers (e.g. tv for D in Figure 1) and thus describes the different systems running
the protocol. It is possible to instanciate a session with the intruder by using
the persistant identifier i. The different sessions can take place concurrently or
sequentially an arbitrary number of times.

Example 3 In Figure 1, the public key version of the protocol contains two
concurrent sessions, one between an agent scard and an agent tv and another
one between the intruder i and agent tv.

6 Intruder knowledge

The intruder knowledge is a set of values introduced in session instance, but not
a set of identifiers.

7 Goals

This is the kind of properties we want to prove. There are three families of goals:
secrecy, authentication and weak authentication all coming from the HLPSL
language and AVISPA [ABB+05] verification tools. The secrecy is related to
one identifier and one set of users which must be given in the declaration. The
identifier represents the value to keep secret and the set of users represents the
agents allowed to learn the secret. The (weak) authentication is related to two
users and an identifier. The first user (weak) authenticates the second on the
last identifier.

8 Acknowledgements

Many thanks to Laurent Vigneron for giving us the source code of the CASRUL
parser.

References

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuellar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko,
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protocol TV; % symmetric key
identifiers
C,D : user;
Ins : number;
K : symmetric_key;

messages
1. D -> C : D,{Ins}K
2. C -> D : C,D,{Ins}K

knowledge
D : C,K;
C : K;

session_instances
[D:tv,C:scard,K:onekey];

intruder_knowledge
scard;

goal
C authenticates D on Ins;

protocol TV; % public key
identifiers
C,D : user;
Ins : number;
Kc,Kd : public_key;

messages
1. D -> C : D,{Ins}Kd’
2. C -> D : C,{Ins}Kc’

knowledge
D : C,Kc,Kd;
C : D,Kc,Kd;

session_instances
[C:scard,D:tv,Kc:kc,Kd:kd]
[C:i,D:tv,Kc:ki,Kd:kd];

intruder_knowledge
tv,scard,ki,ki’,kc,kd;

goal
D authenticates C on Ins;
secrecy_of Ins [C,D];

Figure 1: Cable TV toy example
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