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Université Rennes 1, France

Thomas.Genet@irisa.fr

The tree automaton completion is an algorithm used for proving safety properties of systems that
can be modeled by a term rewriting system. This representation and verification technique works
well for proving properties of infinite systems like cryptographic protocols or more recently on Java
Bytecode programs. This algorithm computes a tree automaton which represents a (regular) over
approximation of the set of reachable terms by rewriting initial terms. This approach is limited by the
lack of information about rewriting relation between terms. Actually, terms in relation by rewriting
are in the same equivalence class: there are recognized by the same state in the tree automaton.

Our objective is to produce an automaton embedding an abstraction of the rewriting relation
sufficient to prove temporal properties of the term rewriting system.

We propose to extend the algorithm to produce an automaton having more equivalence classes
to distinguish a term or a subterm from its successors w.r.t. rewriting. While ground transitions are
used to recognize equivalence classes of terms, ε-transitions represent the rewriting relation between
terms. From the completed automaton, it is possible to automatically build a Kripke structure ab-
stracting the rewriting sequence. States of the Kripke structure are states of the tree automaton and
the transition relation is given by the set of ε-transitions. States of the Kripke structure are labelled by
the set of terms recognized using ground transitions. On this Kripke structure, we define the Regular
Linear Temporal Logic (R-LTL) for expressing properties. Such properties can then be checked using
standard model checking algorithms. The only difference between LTL and R-LTL is that predicates
are replaced by regular sets of acceptable terms.

1 Introduction

Our main objective is to formally verify programs or systems modeled using Term Rewriting Systems.
In a previous work [2], we have shown that it is possible to translate a Java bytecode program into a Term
Rewriting System (TRS). In this case, terms model Java Virtual Machine (JVM) states and the execution
of bytecode instructions is represented by rewriting, according to the small-step semantics of Java. An
interesting point of this approach is the possibility to classify rewriting rules. More precisely, there is a
strong relation between the position of rewriting in a term and the semantics of the executed transition
on the corresponding state. For the case of Java bytecode, since a term represents a JVM state, rewriting
at the top-most position corresponds to manipulations of the call stack, i.e. it simulates a method call or
method return. On the other hand, since the left-most subterm represents the execution context of the
current method (so called frame), rewriting at this position simulates the execution of the code of this
method. Hence, by focusing on rewriting at a particular position, it is possible to analyse a Java program
at the method call level (inter procedural control flow) or at the instruction level (local control flow).
The contribution of this paper is dual. First, we propose an abstract rewriting relation to characterize
the rewriting paths at a particular depth in terms. Second, we propose an algorithm which builds a
tree automaton recognizing this relation between terms. Thus, it is possible for instance to build a tree
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automaton recognizing the graph of method calls by abstracting the rewriting relation for the top-most
position of JVM terms.

The verification technique used in [2], called Tree Automata Completion [5], is able to finitely over-
approximate the set of reachable terms, i.e. the set of all reachable states of the JVM. However, this
technique lacks precision in the sense that it makes no difference between all those reachable terms.
Due to the approximation algorithm, all reachable terms are considered as equivalent and the execution
ordering is lost. In particular, this prevents to prove temporal properties of such models. However, using
approximations makes it possible to prove unreachability properties of infinite state systems.

In this preliminary work, we propose to improve the Tree Automata Completion method so as to
prove temporal properties of a TRS representing a finite state system. The first step is to refine the
algorithm so as to produce a tree automaton keeping an approximation of the rewriting relation between
terms. Then, in a second step, we propose a way to check LTL-like formulas on this tree automaton.

2 Preliminaries

Comprehensive surveys can be found in [1] for rewriting, and in [4, 7] for tree automata and tree language
theory.

Let F be a finite set of symbols, each associated with an arity function, and let X be a countable
set of variables. T (F ,X ) denotes the set of terms, and T (F ) denotes the set of ground terms (terms
without variables). The set of variables of a term t is denoted by V ar(t). A substitution is a function
σ from X into T (F ,X ), which can be uniquely extended to an endomorphism of T (F ,X ). A
position p for a term t is a word over N. The empty sequence λ denotes the top-most position. The set
Pos(t) of positions of a term t is inductively defined by:

• Pos(t) = {λ} if t ∈X

• Pos( f (t1, . . . , tn)) = {λ}∪{i.p | 1≤ i≤ n and p ∈Pos(ti)}

If p ∈Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes the term obtained by
replacement of the subterm t|p at position p by the term s. A term rewriting system (TRS) R is a set
of rewrite rules l → r, where l,r ∈ T (F ,X ), l 6∈X , and V ar(l) ⊇ V ar(r). The TRS R induces
a rewriting relation →R on terms as follows. Let s, t ∈ T (F ,X ) and l → r ∈ R, s→p

R t denotes
that there exists a position p ∈Pos(t) and a substitution σ such that s|p = lσ and r = s[rσ ]p. Note
that the rewriting position p can generally be omitted, i.e. we generally write s→R t. The reflexive
transitive closure of →R is denoted by →∗R . The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈T (F ) | ∃s ∈ E s.t. s→∗R t}.

The verification technique defined in [6, 5] is based on the approximation of R∗(E). Note that
R∗(E) is possibly infinite: R may not terminate and/or E may be infinite. The set R∗(E) is generally
not computable [7]. However, it is possible to over-approximate it [6, 5, 9] using tree automata, i.e. a
finite representation of infinite (regular) sets of terms. In this verification setting, the TRS R represents
the system to verify, sets of terms E and Bad respectively represent the set of initial configurations and
the set of “bad” configurations that should not be reached. Using tree automata completion, we construct
a tree automaton B whose language L(B) is such that L(B) ⊇ R∗(E). If L(B)∩Bad = /0 then this
proves that R∗(E)∩Bad = /0, and thus that none of the “bad” configurations is reachable. We now
define tree automata.

Let Q be a finite set of symbols, with arity 0, called states such that Q∩F = /0. T (F ∪Q) is called
the set of configurations.
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Definition 1 (Transition, normalized transition, ε-transition). A transition is a rewrite rule c→ q, where
c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q. A normalized transition is a transition c→ q where
c = f (q1, . . . ,qn), f ∈F whose arity is n, and q1, . . . ,qn ∈ Q. An ε-transition is a transition of the form
q→ q′ where q and q′ are states.

Definition 2 (Bottom-up nondeterministic finite tree automaton). A bottom-up nondeterministic finite
tree automaton (tree automaton for short) is a quadruple A = 〈F ,Q,QF ,∆∪∆ε〉, where QF ⊆ Q, ∆ is a
set of normalized transitions and ∆ε is a set of ε-transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set ∆∪∆ε ) is denoted by
→∆∪∆ε

. When ∆ is clear from the context, →∆∪∆ε
will also be denoted by→A. We also introduce→6εA

the transitive relation which is induced by the set ∆ alone.

Definition 3 (Recognized language, canonical term). The tree language recognized by A in a state q
is L(A,q) = {t ∈ T (F ) | t →∗A q}. The language recognized by A is L(A) =

⋃
q∈QF

L(A,q). A tree
language is regular if and only if it can be recognized by a tree automaton. A term t is a canonical term
of the state q, if t→6εA q.

Example 1. Let A be the tree automaton 〈F ,Q,QF ,∆〉 such that F = { f ,g,a}, Q = {q0,q1,q2},
QF = {q0}, ∆ = { f (q0)→ q0,g(q1)→ q0,a→ q1,b→ q2} and ∆ε = {q2 → q1}. In ∆, transitions
are normalized. A transition of the form f (g(q1))→ q0 is not normalized. The term g(a) is a term
of T (F ∪Q) (and of T (F )) and can be rewritten by ∆ in the following way: g(a)→6εA g(q1)→6εA q0.
Hence g(a) is a canonical term of q1. Note also that b→A q2 →A q1. Hence, L(A,q1) = {a,b} and
L(A) = L(A,q0) = {g(a),g(b), f (g(a)), f ( f (g(b))), . . .}= { f ∗(g([a|b]))}.

3 The Tree Automata Completion with ε-transitions

Given a tree automaton A and a TRS R, the tree automata completion algorithm, proposed in [6, 5],
computes a tree complete automaton A∗R such that L(A∗R) = R∗(L(A)) when it is possible (for some of
the classes of TRSs where an exact computation is possible, see [5]), and such that L(A∗R)⊇R∗(L(A))
otherwise. In this paper, we only consider the exact case.

The tree automata completion with ε-transtions works as follow. From A = A0
R completion builds a

sequence A0
R .A1

R . . .Ak
R of automata such that if s ∈L(Ai

R) and s→R t then t ∈L(Ai+1
R ). Transitions

of Ai
R are denoted by the set ∆i ∪∆i

ε . Since for every tree automaton, there exists a deterministic tree
automaton recognizing the same language, we can assume that initially A has the following properties:

Property 1 (→6ε deterministic). If ∆ contains two normalized transitions of the form f (q1, . . . ,qn)→ q
and f (q1, . . . ,qn)→ q′, it means q = q′. This ensures that the rewriting relation→6ε is deterministic.

Property 2. For all state q there is at most one normalized transition f (q1, . . . ,qn)→ q in ∆. This
ensures that if we have t→6ε q and t ′→6ε q then t = t ′.

If we find a fixpoint automaton Ak
R such that R∗(L(Ak

R)) = L(Ak
R), then we note A∗R = Ak

R and we
have L(A∗R)⊇R∗(L(A0

R)) [5]. To build Ai+1
R from Ai

R , we achieve a completion step which consists of
finding critical pairs between→R and→Ai

R
. To define the notion of critical pair, we extend the definition

of substitutions to the terms of T (F ∪Q). For a substitution σ : X 7→Q and a rule l→ r ∈R, a critical
pair is an instance lσ of l such that there exists q ∈ Q satisfying lσ →∗Ai

R
q and lσ →R rσ . Note that

since R, Ai
R and the set Q of states of Ai

R are finite, there is only a finite number of critical pairs. For
every critical pair detected between R and Ai

R such that we do not have a state q’ for which rσ → 6εAi
R

q′
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lσ
R
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Figure 1: A critical pair solved

and q′→ q ∈ ∆i
ε , the tree automaton Ai+1

R is constructed by adding new transitions rσ →6ε q′ to ∆i and
q′→ q to ∆i

ε such that Ai+1
R recognizes rσ in q, i.e. rσ →∗

Ai+1
R

q, see Figure 1. It is important to note that
we consider the critical pair only if the last step of the reduction lσ →∗Ai

R
q, is the last step of rewriting is

not a ε-transition. Without this condition, the completion computes the transitive closure of the expected
relation ∆ε , and thus looses precision. The transition rσ → q′ is not necessarily a normalized transition
of the form f (q1, . . . ,qn)→ q′ and so it has to be normalized first. Instead of adding rσ → q′ we add
↓ (rσ → q′) to transitions of ∆i. Here is the ↓ function used to normalize transitions. Note that, in this
function, transitions are normalized using new states of Qnew.

Definition 4 (↓). Let A = 〈F ,Q,QF ,∆∪∆ε〉 be a tree automaton, Qnew a set of new states such that
Q∩Qnew = /0, s ∈ T (F ∪Q) and q′ ∈ Q. The normalization of the transition s→ q′ is done in two
mutually inductive steps. The first step denoted by ↓ (s→ q′ | ∆), we rewrite s by ∆ until rewriting
is impossible: we obtain a unique configuration t if ∆ respects the property 1. The second step ↓′ is
inductively defined by:

• ↓′ ( f (t1, . . . , tn)→ q | ∆) = ∆∪{ f (t1, . . . , tn)→ q} if ∀i = 1 . . .n : ti ∈ Q

• ↓′ ( f (t1, . . . , tn)→ q | ∆) =↓ ( f (t1, . . . ,qi, . . . , tn)→ q | ↓′ (ti → qi | ∆) ) where ti is subterm s.t.
ti ∈T (F ∪Q)\Q and qi ∈ Qnew.

Lemma 1. If the property 1 holds for Ai
R then it holds also for Ai+1

R .

Intuition. The determinism of →6ε is preserved by ∆, since when a new set of transitions is added to
∆ for a subterm ti, we rewrite all other subterms t j with the new ∆ until rewriting is impossible before
resuming the normalization. Then, if we try to add to ∆ a transition f (q1, . . . ,qn)→ q though there exists
a transition f (q1, . . . ,qn)→ q′ ∈ ∆, it means that the configuration f (q1, . . . ,qn) can be rewritten by ∆.
This is a contradiction : when we resume the normalization all subterms ti can not be rewritten by the
current ∆. So, we never add a such transition to ∆. The normalization produces a new set of transitions
∆ that preserves the property 1.

It is very important to remark that the transition q′ → q in Figure 1 creates an order between the
language recognized by q and the one recognized by q′. Intuitively, we know that for all substitution
σ ′ : X →T (F ) such that lσ ′ is a term recognized by q, it is rewritten by R into a canonical term (rσ ′)
of q′. By duality, the term rσ ′ has a parent (lσ ′) in the state q. Extending this reasoning, ∆ε defines a
relation between canonical terms. This relation follows rewriting steps at the top position and forgets
rewriting in the subterms.

Definition 5 (99K). Let R be a TRS. For all terms u v, we have u 99KR v iff there exists w such that
u→∗R w, w→λ

R v and there is not rewriting on top position λ on the sequence denoted by u→∗R w.

In the following, we show that the completion builds a tree automaton where the set ∆ε is an abstrac-
tion 99KRi of the rewriting relation→R , for any relevant set Ri.
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Theorem 1 (Correctness). Let be A∗R a complete tree automaton such that q′ → q is a ε-transition of
A∗R . Then, for all canonical terms u v of states q and q′ respectively s.t. q′→ q, we have :

u

6εA∗R
��

R
//___ v

6εA∗R
��

q q′oo

First, we have to prove that the property 1 is preserved by completion. To prove theorem 1, we need
a stronger lemma.

Lemma 2. Let be A∗R a complete tree automaton, q a state of A∗R and v ∈ L(A∗R ,q). Then, for all
canonical term u of q, we have u→∗R v.

Proof sketch. The proof is done by induction on the number of completion steps to reach the post-fixpoint
A∗R : we are going to show that if Ai

R respects the property of lemma 2, then Ai+1
R also does.

The initial A0
R respects the expected property : we consider any state q and a canonical term t of q:

since no completion step was done, A0
R has no ε-transitions. It means that for all term t ′→6ε q. Thanks

to the property 2, we have t = t ′ and obviously t→∗R t ′.
Now, we consider the normalization of a transition of the form rσ →6ε q′ such that lσ →∗Ai

R
q with ∆

the ground transition set and ∆ε the ε-transition set of Ai
R . We show that the property is true for all new

states (including q′). Then, in a second time, we will show that it is true for state q, if we add the second
transitions of completion: q′→ q.

Let us focus on the normalization of ↓′ (rσ → q′ | ∆) where for any existing state q and for all u v ∈
T (F ) such that v→∆∪∆ε

q and u→∆ q, we have u→∗R v. We show that if we have ∆′ =↓′ (t→ q′ | ∆),
for all u v ∈ T (F ) such that v→∆′∪∆ε

q′ and u→∆′ q, we have u→∗R v. The induction is done over the
decreasing number of symbols of F used to build t.

First case ↓′ (t→ q |∆) where t = f (q1, . . . ,qn) : we define ∆′ by adding the transition f (q1, . . . ,qn)→
q to ∆, where q is a new state. Then, for all substitution σ ′ : Q 7→ T (F ) such that tσ ′ →∆∪∆ε

q, and
all substitution σ ′′ : Q 7→ T (F ) such that tσ ′′→∆′ q we aim at proving that tσ ′′→∗R tσ ′. Since each
state qi is already defined, using the hypothesis on ∆ we deduce that σ ′′(qi)→∗R σ ′(qi). This implies that
tσ ′′→∗R tσ ′, the property also holds for ∆′.

Second case ↓′ (t → q | ∆) where f (t1, . . . , tn): we select ti a subterm of t, obviously the num-
ber of symbols is strictly lower to the number of symbols of t. By induction for the normalization
of ↓′ (ti → qi | ∆) we have a new set ∆′ that respects the expected property. Then, we normalize
t ′ = f (t ′1, . . . ,qi, . . . , t ′n), the term obtained after rewriting with ∆′ thanks to ↓. Since ti 6∈ Q, the num-
ber of symbols in f (t1, . . . ,qi, . . . , tn) is strictly lower to the number of symbols of t. By rewriting the
term f (t1, . . . ,qi, . . . , tn) with ∆′, we obtain the term t ′ for which the number of symbols is lower or equal
to the one of f (t1, . . . ,qi, . . . , tn). Since t ′ has a decreasing number of symbols and ∆′ respects the property
we can deduce by induction that we have ∆′′ =↓′ (t ′→ q | ∆′) such that for all v→∆′′∪∆ε

q′ and u→∆′′ q,
u→∗R v.

So, we conclude that the normalization ↓′ (rσ → q′ | ∆) computes ∆′ the set of ground transitions for
Ai+1

R . For all terms u v such that u→∆′∪∆ε
q′ and u→∆′ q′ we have u→∗R v.

Now, let us consider the second added transition q′ → q to ∆ε , all canonical terms rσ ′′ of q′, and
all terms lσ ′′′ ∈ L(Ai

R ,q) such that lσ ′′′ →R rσ ′′′ and rσ ′′′ = rσ ′′. By hypothesis on Ai
R , we know

that every canonical term u of q we have u→∗R lσ ′′′. By transitivity, we have u→∗R rσ ′′. The last
step consists in proving that for all terms of all states of Ai+1

R , the property holds: this can be done by
induction on the depth of the recognized terms.
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The theorem 1 is shown by considering the introduction of the transition q′→ q. By construction,
there exists a substitution σ : X 7→Q and a rule l→ r ∈R such that we have lσ →∗A∗R q and rσ →6εA∗R q′.
We consider all substitution σ ′ : X 7→ T (F ) such that for each variable x ∈ V (l), σ ′(x) is a canonical
term of the state σ(x). Obviously, using the result of the lemma 2, for all canonical term u of q we have
u→∗R lσ ′. Since the last step of rewriting in the reduction lσ →∗A∗R q is not a ε-transition, we also deduce
that lσ ′ is not produced by a rewriting at the top position of u whereas it is the case for rσ ′ and we have
u 99KR rσ ′.

Theorem 2 (Completeness). Let A∗R be a complete tree automaton, q,q′ states of A∗R and u,v ∈ T (F )
such that u is a canonical term of q and v is a canonical term of q′. If u 99KR v then there exists a
ε-transition q′→ q in A∗R .

Proof sketch. By definition of u 99KR v there exists a term w such that u→∗R w and and there exists
a rule l → r ∈ R and a substitution σ : X 7→ T (F ) such that w = lσ and v = rσ . Since A∗R is a
complete tree automaton, it is closed by rewriting. This means that any term obtained by rewriting any
term of L(A∗R ,q) is also in L(A∗R ,q). This property is true in particular for the terms u and w. Since
w is rewritten in q by transitions of A∗R , we can define a second substitution σ ′ : X 7→ Q such that
lσ →∗A∗R lσ ′→∗A∗R q. Using again the closure property of A∗R , we know that the critical pair lσ ′→R rσ ′

and lσ ′ →∗A∗R q is solved by adding the transitions rσ ′ →6εA∗R q′′ and q′′ → q. Since the property 1 is
preserved by completion steps, we can deduce that q′′ = q′ which means q′→ q.

Example 2. To illustrate this result, we give a completed tree automaton for a small TRS. We define R
as the union of the two sets of rules R1 = {a→ b, b→ c} and R2 = { f (c)→ g(a), g(c)→ h(a), h(c)→
f (a)}. We define initial set E = { f (a)}. We obtain the following tree automaton fixpoint :

A∗R =

〈
QF = {q f }, ∆ =



a → qa
b → qb
c → qc

f (qa) → q f
g(qa) → qg
h(qa) → qh


∆ε =


qb → qa
qc → qb
qg → q f
qh → qg
q f → qh


〉

If we consider the transition qh → qg, and its canonical terms h(a) and g(a) respectively, we can
deduce g(a) 99KR h(a). This is obviously an abstraction since we have g(a)→1

R g(b)→1
R g(c)→λ

R h(a).

In the following, we use the notation 99KRi to specify the relation for a relevant subset Ri of R. For
instance, u 99KRi v denotes that there exists w such that u→∗R w with no rewriting at the λ position of u
and w→λ

Ri
v. In example 2, we can say that g(a) 99KR2 h(a).

4 From Tree Automaton to Kripke Structure

Let A∗R = 〈T (F ),Q,QF ,∆∪∆ε〉 be a complete tree automaton, for a given TRS R and an initial lan-
guage recognized by A. A Kripke structure is a four tuple K = (S,S0,R,L) where S is a set of states,
S0 ⊆ S initial states, R ⊆ S×S a left-total transition relation and L a function that labels each state with
a set of predicates which are true in that state. In our case, the set of true predicates is a regular set of
terms.
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Definition 6 (Labelling Function). Let AP = 〈T (F ),Q,∆〉 be the structure defined from A∗R by removing
ε-transitions and final states. We define the labelling function L : q 7→ 〈T (F ),Q,{q},∆〉 as the function
which associates to a state q the automaton AP where q is the unique final state. We obviously have the
property for all state state q :

∀t ∈L(L(q)), t→6εA∗R q

Now, we can build the Kripke structure for the subset Ri of R on which we want to prove some
temporal properties.
Definition 7 (Construction of a Kripke Structure). We build the 4-tuple (S,S0,R,L) from a tree automaton
such that we have S = Q, S0 ⊆ S is a set of initial states, R(q,q′) if q′→ q ∈ ∆ε and the labelling function
L as just defined previously.

Kripke structures must have a complete relation R. For any state q whose have no successor by R, we
had a loop such that R(q,q) holds. Note that this is a classical transformation of Kripke structures [3].
A Kripke structure is parametrized by the set S0. It defines which connected component of R we are
interested to analyze. For instance, to analyze the abstract rewriting at the top position of terms in
L(A∗R), we define set S0 = QF (the set of final states of A∗R), since all canonical terms of final states
are initial terms. For all abstract rewriting at a deeper position p, we need to define a set Sub of initial
subterms considered as the beginning of the rewriting at the position p. Then the set S0 will be defined
as S0 = {q | ∃t ∈ Sub, t→6εA∗R q}.

Kripke structure models exactly the abstract rewriting relation 99K∗Ri
for the corresponding subset

Ri ⊆R.
Theorem 3. Le be K = (S,S0,R,L) a Kripke structure built from A∗R . For any states s, s′ such that R(s,s′)
holds, there exists two terms u ∈ L(s) and v ∈ L(s′) such that u 99KRi v.

Proof. Here, the proof is quite trivial. It is a consequence of the theorem 1 which can be applied on the
relation R of the Kripke structure.

In Example 2, if we want to verify properties of R1 or R2, we need to consider a different subset
of ∆ε corresponding to the abstraction of the relation rewriting 99KRi . Figures 2 and 3 show the Kripke
structures corresponding to those abstractions. Note that in figure 2, a loop is needed on state c to have a
total relation for K1.

qa qb qc

Figure 2: Kripke structure K1 for 99KR1

q f qg

qh

Figure 3: Kripke structure K2 for 99KR2

The set S0 of initial states depends of the abstract rewriting relation selected. For example, if we want
to analyze 99KR2 (or 99KR1), we define S0 = {q f } (resp. S0 = {qa}).

5 Verification of R-LTL properties

To express our properties, we propose to define the Regular Linear Temporal Logic (R-LTL). R-LTL
is LTL where predicates are replaced by a tree automaton. The language of such a tree automaton
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characterizes a set of admissible terms. A state q of a Kripke structure validates the atomic property P
characterized by a tree automaton AP if and only if one term recognized by L(q) must be recognized by
AP to satisfy the property. More formally:

K(Q, QF , R, L), q |= P ⇐⇒ L(L(q))∩L(AP) 6= /0

We also add the operators (∧, ∨, ¬, X, F, G, U, R) with their standard semantics as in LTL to keep
the expressiveness of the temporal logic. More information about these operators can be found in [3].
Note that temporal properties do not range over the rewriting relation→R but over its abstraction 99KR .
It means that the semantics of the temporal operators has to be interpreted w.r.t. this specific relation.
For example, the formula G({ f (a)} =⇒ X{g(a)}) on K2 (for more clarity, we note predicates as sets
of terms): the formula has to be interpreted as : for all q q′, if K2, q |= { f (a)} and R(q,q′) then we have
K2, q′ |= {g(a)}. In the rewriting interpretation the only term u such that f (a) 99KR2 u is u = g(a).

We use the Büchi automata framework to perform model checking. A survey of this technique can
be found in the chapter 9 of [3]. LTL (or R-LTL) formulas and Kripke structures can be translated into
Büchi automata. We construct two Büchi automata : BK obtained from the Kripke structure and BL

defined by the LTL formula. Since the set of behaviors of the Kripke structure is the language of the
automaton BK , the Kripke structure satisfies the R-LTL formula if all its behaviors are recognized by
the automaton BL. It means checking L(BK) ⊆L(BL). For this purpose, we construct the automaton
BL that recognizes the language L(BL) and we check the emptiness of the automaton B∩ that accepts
the intersection of languages L(BK) and L(BL). If this intersection is empty, the term rewriting system
satisfies the property. This is the standard model-checking technique.

BM and BK are classically defined as 5-tuples: alphabet, states, initial states, final states and transition
relation. Generally, the alphabet of Büchi automata is a set of predicates. Since we use here tree automata
to define predicates, the alphabet of BK and BL is Σ the set of tree automata that can be defined over
T (F ). Actually, a set of behaviors is a word which describes a sequence of states: if π = s0s1s2s3 . . .
denotes a valid sequence of states in the Kripke structure, then the word π ′ = L(s0)L(s1)L(s2) . . . is
recognized by BK . The algorithms used to build BM and BK can be found in [3].

The automaton intersection B∩ is obtained by computing the product of BK by BL. By construction
all states of BK have to be final. Intuitively any infinite path over the Kripke structure must be recognized
by BK . This case allows to use a simpler version of the general Büchi automata product.

Definition 8 (BK×BL). The product of BK = 〈Σ, Q, Qi, ∆, Q〉 by BL = 〈Σ, Q′, Q′i, ∆′, F〉 is defined as

〈Σ, Q×Q′, Qi×Q′i, ∆×, Q×F〉

where ∆× is the set of transitions (qK ,qL)
(AK ,AL)−→ (q′K ,q′L) such that qK

AK−→ q′K is a transition of BK and

qL
AL−→ q′L is a transition of BL. Moreover, the transition is only valid if the intersection between the

languages of AK and AL is non empty as expected by the satisfiability of the R-LTL atomic formula.

Finally the emptiness of the language L(B∩) can be checked using the standard algorithm based on
depth first search to check if final states are reachable.

Example 3. To illustrate the approach, we propose to check the formula P = G({ f (a)} =⇒ X{g(a)})
on example 2. The automaton BL (fig. 4) recognizes the negation of the formula P expressed as F({ f (a)}∧
X¬{g(a)}) and BK (fig. 5) recognizes the all behaviors of the Kripke structure K2 (fig. 3). The notation
Aα denotes the tree automaton such that its language is described by α (A¬g(a) recognizes the com-
plement of the language L(Ag(a)) and A∗ recognizes all term in T (F )). Figure 6 shows the result of
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intersection B∩ between BK and BL. Only reachable states and valid transitions (labeled by non empty
tree automata intersection) are showed. Since no reachable states of B∩ are final, its language is empty.
It means that all behaviors of K2 satisfy P : the only successor of f (a) for the relation 99KR2 is g(a).

1 2 3

A∗

A f (a) Ag(a)

A∗

Figure 4: Automaton BL

4 5

6 7

L(q f )

L(qg)

L(qg)

L(qg)

Figure 5: Automaton BK

1,4 1,5

1,6 1,72,5

A∗ ∩L(q f )

A f (a) ∩L(q f ) A∗ ∩L(qg)

A∗ ∩L(qh)

A∗ ∩L(q f )

A f (a) ∩L(qg)

Figure 6: Automaton B∩

6 Conclusion, Discussion

In this paper, we show how to improve the tree automata completion mechanism to keep the ordering
between reachable terms. This ordering was lost in the original algorithm [5]. Another contribution is
the mechanism making it possible to prove LTL-like temporal properties on such abstractions of sets
of reachable terms. The work presented here only deals with finite state systems and exact tree au-
tomata completion results. Future plans are to extend this result so as to prove temporal properties on
over-approximations of infinite state systems. A similar objective has already been tackled in [8]. How-
ever, this was done in a pure rewriting framework where abstractions are more heavily constrained than
in tree automata completion [5]. Hence, by extending LTL formula checking on tree automata over-
approximations, we hope to ease the verification of temporal formula on infinite state systems.
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