
Certifying a Tree Automata Completion Checker

Benôıt Boyer, Thomas Genet, and Thomas Jensen

IRISA / Université de Rennes 1 / CNRS
Campus de Beaulieu

F-35042 Rennes Cedex
bboyer,genet,jensen@irisa.fr

Abstract. Tree automata completion is a technique for the verification
of infinite state systems. It has already been used for the verification
of cryptographic protocols and the prototyping of Java static analyzers.
However, as for many other verification techniques, the correctness of
the associated tool becomes more and more difficult to guarantee. It is
due to the size of the implementation that constantly grows and due to
optimizations which are necessary to scale up the efficiency of the tool to
verify real-size systems. In this paper, we define and develop a checker for
tree automata produced by completion. The checker is defined using Coq
and its implementation is automatically extracted from its formal speci-
fication. Using extraction gives a checker that can be run independently
of the Coq environment. A specific algorithm for tree automata inclusion
checking has been defined so as to avoid the exponential blow up. The
obtained checker is certified in Coq, independent of the implementation
of completion, usable with any approximation performed during comple-
tion, small and fast. Some benchmarks are given to show how efficient
the tool is.

1 Introduction

Static program analysis is one of the cornerstones of software verification and is
increasingly used to protect computing devices from malicious or mal-functioning
code. However, program verifiers are themselves complex programs and a sin-
gle error may jeopardize the entire trust chain of which they form part. Efforts
have been made to certify static analyzers [KN03,BD04,CJPR05] or to certify
the results obtained by static analyzers [LT00,BJP06] in Coq in order to in-
crease confidence in the analyzers. In this paper, we instantiate the general
framework used in [BJP06] to the particular case of analyzing term rewriting
systems by tree automata completion [Gen98,FGVTT04]. Given a term rewrit-
ing system, the tree automata completion is a technique for over-approximating
the set of terms reachable by rewriting in order to prove the unreachability of
certain “bad” states that violate a given security property. This technique has al-
ready been used to prove security properties on cryptographic protocols [GK00],
[GTTVTT03,BHK04,ABB+05,ZD06] and, more recently, to prototype static an-
alyzers on Java byte code [BGJL07].

In this paper, we show how to mechanize the proof, within the Coq proof
assistant, that the tree automaton produced by completion recognizes an over-
approximation of all reachable terms. Coq is based on constructive logic (Calcu-
lus of Inductive Constructions) and it is possible to extract an Ocaml or Haskell
function implementing exactly the algorithm whose specification has been ex-
pressed in Coq. The extracted code is thus a certified implementation of the
specification given in the Coq formalism. Extracted programs are standalone
and do not require the Coq environment to be executed. For details about the
extraction mechanisms, readers can refer to [BC04].

A specific challenge in the work reported here has been how to marry con-
structive logic and efficiency. Previous case studies with tree automata comple-
tion, on cryptographic protocols [GTTVTT03] and on Java bytecode [BGJL07]
show that we need an efficient completion algorithm to verify properties of real
models. For instance, the current implementation of completion (called Tim-
buk [GVTT00]) is based on imperative data structures like hash tables whereas
Coq allows only pure functional structures. A second problem is the termination
of completion. Since Coq can only deal with total functions, functions must be
proved terminating for any computation. In general, such a property cannot be
guaranteed on completion because it mainly depends on term rewriting system
and approximation equations given initially.

For these two reasons, there is little hope to specify and certify an efficient
and purely functional version of the completion algorithm. Instead, we have
adopted a solution based on a result-checking approach. It consists of building
a smaller program (called the checker) - certified in Coq - that checks if the tree
automaton computed by Timbuk is sound. In this paper, we restrict to the case
of left-linear term rewriting systems which revealed to be sufficient for verifying
Java programs [BGJL07]. However, a checker dealing with general term rewriting
systems like completion does in [FGVTT04] is under development.

The closest work to ours is the one done by X. Rival and J. Goubault-
Larrecq [RGL01]. They have designed a library to manipulate tree automata
in Coq and proposed some optimized formal data structures that we reuse. How-
ever, we aim at dealing with larger tree automata than those used in their
benchmarks. Moreover, we need some other tools which are not provided by the
library as for example a specific algorithm to check inclusion.

This paper is organized as follows. Rewriting and tree automata are reviewed
in Section 2 and tree automata completion in Section 3. Section 4 states the main
functions to define, inclusion and closure test, and the corresponding theorems
to prove. Section 5 and Section 6 give the Coq formalization of rewriting and of
tree automata, respectively. The core of the checker consists of two algorithms:
an optimized automata inclusion test, defined in Section 7, and a procedure
for checking that an automaton is closed under rewriting w.r.t. a given term
rewriting system, defined in Section 8. Section 9 gives some details about the
performances of the checker in practice. Finally, we conclude and list some on-
going research on this subject.

2 Preliminaries

Comprehensive surveys can be found in [BN98] for rewriting, and in [CDG+02,GT95]
for tree automata and tree language theory.

Let F be a finite set of symbols, each associated with an arity function, and
let X be a countable set of variables. T (F ,X) denotes the set of terms, and T (F)
denotes the set of ground terms (terms without variables). The set of variables
of a term t is denoted by Var(t). A substitution is a function σ from X into
T (F ,X), which can be extended uniquely to an endomorphism of T (F ,X). A
position p for a term t is a word over N. The empty sequence ε denotes the
top-most position. The set Pos(t) of positions of a term t is inductively defined
by:

– Pos(t) = {ε} if t ∈ X
– Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes
the term obtained by replacement of the subterm t|p at position p by the term
s. A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X), l 6∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear
if each variable of l (resp. r) occurs only once in l. A TRS R is left-linear if
every rewrite rule l → r of R is left-linear). The TRS R induces a rewriting
relation →R on terms whose reflexive transitive closure is denoted by →?

R. The
set of R-descendants of a set of ground terms E is R∗(E) = {t ∈ T (F) | ∃s ∈
E s.t. s →?

R t}.
The verification technique defined in [Gen98,FGVTT04] is based on R∗(E).

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. The set R∗(E) is generally not computable [GT95]. However, it is possi-
ble to over-approximate it [Gen98,FGVTT04,Tak04] using tree automata, i.e. a
finite representation of infinite (regular) sets of terms. In this verification setting,
the TRS R represents the system to verify, sets of terms E and Bad represent
respectively the set of initial configurations and the set of “bad” configurations
that should not be reached. Then, using tree automata completion, we construct
a tree automaton B whose language L(B) is such that L(B) ⊇ R∗(E). Then if
L(B) ∩Bad = ∅ then this proves that R∗(E) ∩Bad = ∅, and thus that none of
the “bad” configurations is reachable. We now define tree automata.

LetQ be a finite set of symbols, with arity 0, called states such thatQ∩F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition is a
rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q.
A normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F
whose arity is n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up nondeterministic finite tree automaton). A
bottom-up nondeterministic finite tree automaton (tree automaton for short) is
a quadruple A = 〈F ,Q,QF ,∆〉, where QF ⊆ Q and ∆ is a set of normalized
transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A (the
set ∆) is denoted by →∆. When ∆ is clear from the context, →∆ will also be
denoted by →A. Here is the definition of the recognized language, see [BGJ08]
for examples.

Definition 3 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F) | t →?

A q}. The language recognized by A
is L(A) =

⋃
q∈QF

L(A, q). A tree language is regular if and only if it can be
recognized by a tree automaton.

3 Tree Automata Completion

Given a tree automaton A and a TRS R, the tree automata completion al-
gorithm, proposed in [Gen98,FGVTT04], computes a tree automaton A∗R such
that L(A∗R) = R∗(L(A)) when it is possible (for some of the classes of TRSs
where an exact computation is possible, see [FGVTT04]) and such that L(A∗R) ⊇
R∗(L(A)) otherwise.

The tree automata completion works as follows. From A = A0
R completion

builds a sequence A0
R.A1

R . . .Ak
R of automata such that if s ∈ L(Ai

R) and s →R t
then t ∈ L(Ai+1

R). If we find a fixpoint automaton Ak
R such that R∗(L(Ak

R)) =
L(Ak

R), then we note A∗R = Ak
R and we have L(A∗R) = R∗(L(A0

R)), or L(A∗R) ⊇
R∗(L(A)) if R is not in one class of [FGVTT04]. To build Ai+1

R from Ai
R, we

achieve a completion step which consists of finding critical pairs between →R
and →Ai

R
. To define the notion of critical pair, we extend the definition of

substitutions to terms of T (F ∪Q). For a substitution σ : X 7→ Q and a rule
l → r ∈ R, a critical pair is an instance lσ of l such that there exists q ∈ Q
satisfying lσ →∗

Ai
R

q and lσ →R rσ. Note that since R, Ai
R and the set Q

of states of Ai
R are finite, there is only a finite number of critical pairs. For

every critical pair detected between R and Ai
R such that rσ 6→∗

Ai
R

q, the tree

automaton Ai+1
R is constructed by adding a new transition rσ → q to Ai

R such
that Ai+1

R recognizes rσ in q, i.e. rσ →∗
Ai+1
R

q, see Figure 1.

lσ R
//

∗Ai
R

��

rσ

∗

Ai+1
R

ooq

Fig. 1. Critical pair

uσ
E

Ai+1
R ∗

��

vσ

∗ Ai+1
R

��
q q′

Fig. 2. Detection of merging

However, the transition rσ → q is not necessarily a normalized transition of
the form f(q1, . . . , qn) → q and so it has to be normalized first. Thus, instead of
adding rσ → q we add Norm(rσ → q) to transitions of Ai

R. Here is the Norm
function used to normalize transitions. Note that, in this function, transitions
are normalized using either new states of Qnew or states of Q, states of the
automaton being completed. As we will see in Lemma 1, this has no effect on
the safety of the normalization but only on its precision.

Definition 4 (Norm). Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton, Qnew a set
of new states such that Q ∩ Qnew = ∅, t ∈ T (F ∪Q) and q ∈ Q. The function
Norm is inductively defined by:

– Norm(t → q) = ∅ if t = q,
– Norm(t → q) = {c → q | c → t ∈ ∆} if t ∈ Q,
– Norm(f(t1, . . . , tn) → q) =

⋃
i=1...n Norm(ti → qi) ∪ {f(q1, . . . , qn) → q}

where ∀i = 1 . . . n : (ti ∈ Q ⇒ qi = ti)∧(ti ∈ T (F ∪Q)\Q ⇒ qi ∈ Q∪Qnew).

When using only new states to normalize all the new transitions occurring
in all the completion steps, completion is as precise as possible. However, doing
so, completion is likely not to terminate (because of general undecidability re-
sults [GT95]). Enforcing termination of completion can be easily done by bound-
ing the set of new states to be used with Norm during the whole completion.
We then obtain a finite tree automaton over-approximating the set of reachable
states. The fact that normalizing with any set of states (new or not) is safe is
guaranteed by the following simple lemma. For the general safety theorem of
completion see [FGVTT04].

Lemma 1. For all tree automaton A = 〈F ,Q,Qf ,∆〉, t ∈ T (F ∪Q) \ Q and
q ∈ Q, if Π = Norm(t → q) whatever the states chosen in Norm(t → q) we
have t →∗

Π q.

Proof. This can be done by a simple induction on transitions [FGVTT04].

To let the user of completion guide the approximation, we use two different
tools: a set N of normalization rules (see [FGVTT04]) and a set E of approx-
imation equations. Rules and equations can be either defined by hand so as
to prove a complex property [GTTVTT03], or generated automatically when
the property is more standard [BHK04]. Normalization rules can be seen as a
specific strategy for normalizing new transitions using the Norm function. We
have seen that Lemma 1 is enough to guarantee that the chosen normalization
strategy has no impact on the safety of completion. Similarly, for our checker,
we will see in Section 8 that the related Coq safety proof can be carried out
independently of the normalization strategy (i.e. set N of normalization rules).
On the opposite, the effect of approximation equations is more complex and has
to be studied more carefully. An approximation equation is of the form u = v
where u, v ∈ T (F ,X). Let σ : X 7→ Q be a substitution such that uσ →Ai+1

R
q,

vσ →Ai+1
R

q′ and q 6= q′, see Figure 2. Then, we know that there exists some
terms recognized by q and some recognized by q′ which are equivalent modulo
E . A correct over-approximation of Ai+1

R consists in applying the Merge func-
tion to it, i.e. replace Ai+1

R by Merge(Ai+1
R , q, q′), as long as an approximation

equation of E applies. The Merge function, defined below, merges states in a
tree automaton. See [BGJ08] for examples of completion and approximation.

Definition 5 (Merge). Let A = 〈F ,Q,QF ,∆〉 be a tree automaton and q1, q2

be two states of A. We denote by Merge(A, q1, q2) the tree automaton where
every occurrence of q2 is replaced by q1 in Q, QF and in every left-hand side
and right-hand side of every transition of ∆.

4 A result checker for tree automata completion

By moving the certification problem from the completion algorithm to the checker,
the certification problem consists in proving the following Coq theorem. In Coq
specifications, recall that ’→’ is used to denote both the logical implication and
functional types. Similarly, ’:’ is used to give the type of a function, the type of
a data or the statement for a theorem.

Theorem sound_checker :
∀ A A’ R, checker A R A’ = true → ApproxReachable A R A’.

where ApproxReachable is a Coq predicate that describes the Soundness Prop-
erty: L(A′) contains all terms reachable by rewriting terms of L(A) with R, i.e.
L(A′) ⊇ R∗(L(A)). To state formally this predicate in Coq, we need to give
a Coq axiomatization of Term Rewriting Systems and of Tree Automata. It is
given in Section 5. Given two automata A, A′ and a TRS R the checker veri-
fies that L(A′) ⊇ R∗(L(A)) or (ApproxReachable A R A’) in Coq. To perform
this, we need to check the two following properties:

– Included: inclusion of initial set in the fixpoint: L(A) ⊆ L(A′).
– IsClosed: A′ is closed by rewriting with R: For all l → r ∈ R and all

t ∈ L(A′), if t is rewritten in t′ by the rule l → r then t′ ∈ L(A′).

For each item, we provide a Coq function and its correctness theorem: function
inclusion is dedicated to inclusion checking and function closure checks if
a tree automaton is closed by rewriting. We also give the theorem used to deduce
ApproxReachable A R A’ from Included A A’ and IsClosed R A’:

Theorem inclusion_sound:
∀ A A’, inclusion A A’ = true → Included A A’.

Theorem closure_sound:
∀ R A’, closure R A’ = true → IsClosed R A’.

Theorem Included_IsClosed_ApproxReachable:
∀ A A’ R, Included A A’ → IsClosed R A’ → ApproxReachable A R A’.

Note that, in this paper we focus on the proof of L(A′) ⊇ R∗(L(A)). However,
to prove the unreachability property, the emptiness of the intersection between
L(A′) and the bad term set has also to be verified. Since the formalization
in Coq of the intersection and emptiness decision are close to their standard
definition [CDG+02], and since they have already been covered by [RGL01],
they are not be detailed in this paper.

5 Formalization of Term Rewriting Systems

The aim of this part is to formalize in Coq: terms, term rewriting systems, reach-
able terms and the reachability problem itself. First, we use the positive integers

provided by the Coq’s standard library to define symbol sets like variables (X)
or function symbols (F). We rename positive into ident to be more explicit.
Then, we define term set T (F ,X) using inductive types:

Inductive term : Set :=
| Fun : ident → list term → term
| Var : ident → term.

A rewrite rule l → r is represented by a pair of terms with a well-definition proof,
i.e. a Coq proof that the set of variables of r is a subset of the set of variables of
l. The function Fv : term →list ident builds the set of variables for a term.

Inductive rule : Set :=
| Rule (l r : term)(H : subseteq (Fv r) (Fv l)) : rule.

In the following, list rule type represents a TRS. In Coq we use (t @ sigma)

to denote the term resulting of the application of a substitution sigma to each
variable that occurs in a term t. In Coq, the rewriting relation ”u is rewritten
in v by l → r”, commonly defined by ∃σ s.t. u|p = lσ ∧ v = u[rσ]p, is split into
two predicates:

– The first one defines the rewriting of a term at the topmost position. In fact,
the set of term pairs (t, t′) which are rewritten at the top most by the rule
can be seen as the set of term pairs (lσ, rσ) for any substitution σ.

– The second one just defines inductively the rewriting relation at any position
of a term t by a rule l → r, by the topmost rewriting of any subterm of t by
l → r.

(∗ Topmost r ewr i t ing : ∗)
Inductive TRew (x : rule) : term → term → Prop :=
| R_Rew : ∀ s l r (H : subseteq (Fv r) (Fv l)),

x = Rule l r H → TRew x (l @ s) (r @ s).

Similarly, using an inductive definition it is possible to define the Rew predi-
cate for rewriting at any position. Then we have to define →∗

R. In Coq, we prefer
to see it as the predicate Reachable R u that characterizes the set of reachable
terms from u by →∗

R.

Inductive Reachable(R : list rule)(t : term) : term → Prop:=
| R_refl : Reachable R t t
| R_trans : ∀ u v r, Reachable R t u → In r R → Rew r u v →

Reachable R t v.

6 Formalization of Tree Automata

The fact that the checker, to be executed, is directly extracted from the Coq
formalization has an important consequence on the tree automata formalization.
Since the data structures used in the formalization are those that are really
used for the execution, they need to be formal and efficient. For tree automata,

instead of a naive representation, it is thus necessary to use optimized formal data
structures borrowed from [RGL01]. In Section 5, we have represented variables
X and function symbols F by the type ident. We do the same for Q. We define
a tree automaton as a pair (QF ,∆), where QF is the finite set of final states,
and ∆ the finite set of normalized transitions like f(q1, . . . , qn) → q. In Coq, the
t_automaton record stands for this pair where the final state field qf is a simple
list ident and the transition set field delta has Delta.t type. The Delta

module contains the implementation, the theorems and proofs for normalized
transition sets. This representation is based on the FMapPositive Coq library
of functional mappings, where data are indexed by positive numbers. A set
of transitions of type Delta.t is a map where each state q indexes a set of
configuration like f(q1, . . . , qn). In the same way, each set of configuration is
a map where function symbols are used to index a stack of state lists. For all
transitions f(q1, . . . , qn) → q, the state list (q1, . . . , qn) is stored in the stack
indexed by symbol f and state q. Now we can define a predicate to characterize
the recognized language of a tree automaton. In fact, we are defining the set of
ground terms that are reduced to a state q by a transition set ∆. This set, which
corresponds to L(A, q) if ∆ is the set of transitions of A, can be constructed
inductively in Coq using the single deduction rule:

t1 ∈ L(∆, q1) tn ∈ L(∆, qn)
If f(q1, . . . , qn) → q ∈ ∆

f(t1, . . . , tn) ∈ L(∆, q)

In Coq, we express this statement using a mutually inductive predicate IsRec.
A term t is recognized by a tree automaton (QF ,∆), if the predicate IsRec ∆ q t
is valid for q ∈ QF .

7 An optimized inclusion checker

In this part, we give the formal definition of the Included property and of
the inclusion Coq function used to effectively check the tree automata inclu-
sion. From the previous formal definitions on tree automata, we can state the
Included predicate in the following way:

Definition Included (a b : t_automaton) : Prop :=
∀ t q, In q a.(qf) → IsRec a.(delta) q t →
∃ q’, In q’ b.(qf) ∧ IsRec b.(delta) q’ t.

Now let us focus on the function inclusion itself. The usual algorithm for
proving inclusion of regular languages recognized by nondeterministic bottom-
up tree automata, for instance for proving L(A) ⊆ L(B), consists in proving
that L(A) ∩ L(B) = ∅, where B is the complement automaton for B. However,
the algorithm for building B from B is EXPTIME-complete [CDG+02]. This is
the reason why we here define a criterion with a better practical complexity.
It is is based on a simple syntactic comparison of transition sets, i.e. we check
the inclusion of transition sets modulo the renamings performed by the Merge
function. This increases a lot the efficiency of our checker, especially by saving

memory. This is crucial to check inclusion of big tree automata (see Section 9).
This algorithm is correct but, of course, it is not complete in general, i.e. not
always able to prove that L(A) 6⊆ L(B). However, we show in the following that,
under certain conditions on A and B which are satisfied if B is obtained by
completion of A, this algorithm is also complete and thus becomes a decision
procedure. First, we introduce the following notation:

Γ : induction hypothesis set
∆i : transition set of the tree automaton Ai

{c|c → q ∈ ∆} : configurations of ∆ that are rewritten in q
{ci}m

n : configuration set from cn to cm

We formulate our inclusion problem by formulas of the form: Γ `A,B q b q′.
Such a statement stands for: under the assumption Γ , it is possible to prove
that L(A, q) ⊆ L(B, q′). The algorithm consists in building proof trees for those
statements using the following set of deduction rules.

(Induction)
Γ ∪ {q b q′} `A,B {c|c →∆A q} b {c|c →∆B q′}

Γ `A,B q b q′
if (q b q′) /∈ Γ

(Axiom)
Γ ∪ {q b q′} `A,B q b q′

(Empty)
Γ `A,B ∅ b {c′j}m

1

(Split-l)
Γ `A,B c1 b {c′j}m

1 Γ `A,B cn b {c′j}m
1

Γ `A,B {ci}n
1 b {c′j}m

1

(Weak-r)
Γ `A,B c b c′k

Γ `A,B c b {c′i}n
1

if (1 ≤ k ≤ n) (Const.)
Γ `A,B a() b a()

(Config)
Γ `A,B q1 b q′1 Γ `A,B qn b q′n

Γ `A,B f(q1, . . . , qn) b f(q′1, . . . , q
′
n)

Given QFA and QFB the sets of final states of A and B, #() a symbol of arity
1 not occurring in F , to prove L(A) ⊆ L(B), we start our deduction by the
statement: ∅ `A,B {#(q) | q ∈ QFA} b {#(q) | q ∈ QFB}

Example 1. Let A and B be two automata s.t.:

A =

8<:
a → q1

b → q2

f(q1, q2) → q

9=; with QFA = {q} and B =

8<:
a → q′

b → q′

f(q′, q′) → q′

9=; with QFB = {q′}

Here we have L(A) ⊆ L(B) and we can derive ∅ `A,B #(q) b #(q′) with the
deduction rules:

(Const.)
{q b q′, q1 b q′} `A,B a() b a()

(Weark-r)
{q b q′, q1 b q′} `A,B a() b {a(), b(), f(q′, q′)}

(Induction)
{q b q′} `A,B q1 b q′

(Const.)
{q b q′, q2 b q′} `A,B b() b b()

{q b q′, q2 b q′} `A,B b() b {a(), b(), f(q′, q′)}

{q b q′} `A,B q2 b q′
(Config)

{q b q′} `A,B f(q1, q2) b f(q′, q′)
(Weark-r)

{q b q′} `A,B f(q1, q2) b {a(), b(), f(q′, q′)}
(Induction)

∅ `A,B q b q′
(Config)

∅ `A,B #(q) b #(q′)

The main property we want to demonstrate in Coq is that this syntactic
criterion implies the semantic inclusion for the considered languages in 6.

Theorem inclusion_sound :
∀ A B, inclusion A B = true → Included A B.

Before proving this in Coq, we need to define more formally the function
inclusion. This function cannot be defined as a simple structural recursion.
Thus Coq needs a termination proof for this algorithm. Thanks to the Coq feature
Function, it is possible to define the algorithm using a measure function and
provide a proof that its value decreases at each recursive call to ensure the
termination.

Termination of deduction rules can be proved by defining a measure function
µ on statements of the form Γ `A,B α b β. The Γ relation can be seen as
a subset of QA × QB which is a finite set. All tree automata have a finite
number of states. Then the statement measure µ(Γ `A,B α E β) is defined as
tuple (µ1(Γ), µ2(α) + µ2(β)) where:2664

µ1(Γ) = |QA ×QB | − |Γ |

µ2(x) =

8<:
(m + 1− n) if x = {ci}m

n

1 if x = f(q1, . . . , qn),
0 otherwise

Then we define the ordering � by the lexicographic combination of the usual
order < on natural numbers for µ1 and µ2. Since < is well founded, the lexico-
graphic combination � is also well founded.

Theorem 1. (Termination) At each deduction step, the measure decreases strictly:

Γ1 `A,B α1 b β1 . . . Γn `A,B αn b βn

Γ ′ `A,B α′ b β′
=⇒

n̂

i=1

µ(Γi `A,B αi b βi) � µ(Γ ′ `A,B α′ b β′)

Proof. See [BGJ08], for details.

Theorem 2. (Soundness) For all tree automata A and B, if there exists
∏

a
proof tree of ∅ `A,B q b q′ then we have L(∆A, q) ⊆ L(∆B, q′)

Proof. This can be done by an induction on the size of the term of L(∆A, q).
See [BGJ08] for details.

As said above, the described algorithm is not complete in general. However,
we show that it is complete for tree automata produced by completion. In par-
ticular if Ak

R is obtained after k completion step from A0 then we can build a
proof

∏
for the statement ∅ `A0,Ak

R
{#(q) | q ∈ QF0} b {#(q′) | q′ ∈ QFk

}.
Recall that the tree automaton produced by the kth step of completion is noted
Ak = 〈F ,Qk,QFk

,∆k〉. The tree automata completion performs two main op-
erations at each step of calculus: normalization and state merging. In the case of
normalization, the language inclusion can simply be proved using transition set
inclusion. With the state merging operation, set inclusion is not enough because
it implies transition merging too. This is the reason why we have to define a new
order relation preserved by each operation.

Definition 6. Given A, B two tree automata, v is the reflexive and transitive
relation defined as follows: A v B if there exists a function % that renames states
of A into states of B and such that all renamed rules ∆A are contained in ∆B:

A v B ⇐⇒ ∃% : QA → QB, %(∆A) ⊆ ∆B ∧ %(QFA) ⊆ QFB (1)

Lemma 2. Given a tree automaton A,

1. if A′ = A ∪Norm(rσ → q) then A v A′
2. if A′ = Merge(A, q1, q2) then A v A′

Proof. For details, see [BGJ08].

Theorem 3. Given a tree automaton A0, a TRS R and an equation set E, after
k completion steps we obtain Ak

R such that A0 v Ak
R.

Proof. Since we have proved that v is preserved by Norm and Merge functions,
it is also the case for every completion step between Ak

R and Ak+1
R , i.e Ak

R v
Ak+1
R . Then, the theorem can be deduced using the reflexivity and transitivity

of v. See [BGJ08].

Now, we define the completeness property as the following:

Theorem 4. (Completeness) Given two tree automata A and B if A v B then
there exists

∏
a proof of statement ∅ `A,B {#(qf) | qf ∈ QFA

} b {#(q′f) | q′f ∈
QFB

}.

Proof. For details, see [BGJ08].

Thus, we can ensure that for an automaton Ak
R obtained by k completion

steps from A0, there exists a proof
∏

of the statement ∅ `A0,Ak
R
{#(q) | q ∈

QF0 b {#(q′) | q′ ∈ QFk
}. This can be obtained by a simple combination of the

two previous theorems.
Finally, as shown in [BGJ08], this algorithm has a polynomial complexity

w.r.t. space. Using tabling, it can also be implemented so as to be polynomial in
time. However, since proofs are more difficult to carry out in Coq on a tabled ver-
sion, we chose to stick to a simpler implementation that appears to be sufficient
for our test cases (see Section 9).

8 Formalization of closure by rewriting

In this part we aim at defining formally the IsClosed predicate, the function
closure and prove the soundness of this function w.r.t. IsClosed. Recall that
to check if a tree automaton A = 〈QF , ∆〉 is closed w.r.t. a TRS R, it is enough
to prove that for all t ∈ L(A), if t′ is reachable from t by →∗

R then t′ ∈ L(A).
Now that we have defined in Coq rewriting and tree automata, we can define
more formally the IsClosed predicate and recall the closure_sound theorem
to prove:

Definition IsClosed (R : list rule) (A : t_aut) : Prop :=
∀ q t t’, IsRec A.delta q t → Reachable R t t’ → IsRec A.delta q t’.

Theorem closure_sound:
∀ R A’, LeftLinear R → closure R A’ = true → IsClosed R A’.

The algorithm to check closure of A by R computes for each left-linear rule
l → r ∈ R the full set of the substitutions σ s.t. lσ →∗

∆ q and then, checks
that rσ →∗

∆ q. Then, the correctness proof consists in showing that if closure
answers true, then L(A) is closed by →R. We now give some hints to define the
closure function. First, for all left-linear rule l → r of R, this function has to
find all the substitutions σ : X 7→ Q and all the states q ∈ Q such that lσ →∗

∆ q.
This is what we call the matching-problem. Second, this function has to check
that for all the q and σ found, we have rσ →∗

∆ q. Third, in the correctness
theorem, we have to show that all the substitutions σ : X 7→ Q cover the set
of substitutions on terms, i.e. of the form σ′ : X 7→ T (F), and hence cover all
reachable terms.

We note lEq the matching problem consisting in finding all the substitutions
σ : X 7→ Q and all the states q ∈ Q such that lσ →∗

∆ q. An algorithm solving
this kind of problems was defined in [Gen97]. Note that it is complete only if l is
linear. The algorithm consists in normalizing the formula lEq with the following
deduction rules:

(Unfold)
f(s1, . . . , sn) E f(q1, . . . , qn)

s1 E q1 ∧ · · · ∧ sn E qn
(Clash)

f(s1, . . . , sn) E g(q′1, . . . q
′
m)

⊥

(Config)
s E q

s E c1 ∨ · · · ∨ s E ck∨ ⊥
if s /∈ X , and ∀ci, s.t. ci → q ∈ ∆.

Moreover, after each application of one of these rules, the result is also rewrit-
ten into disjunctive normal form. When normalization of the initial problem is
terminated, we obtain a formula like

∨n
i=1 φi where φi =

∧m
j=1 xi

j E qi
j such that

xi
j ∈ X and qi

j ∈ Q. Each φi can be seen as a substitution σi = {xi
j 7→ qi

j}. The
implementation of the matching function in Coq is very close to this algorithm.
Moreover, the soundness and completeness properties of this algorithm can be
defined in Coq as follows:

Theorem matching_sound :
∀ D q l s, In s (matching D q l) → IsRed D q (l @ s).

Theorem matching_complete :
∀ D q l s, linear l → IsRed D q (l @ s) → In s (matching D q l).

As mentioned before, the matching algorithm is only complete for linear
terms. Thus, this assumption occurs in the matching_complete theorem as
well as in all theorems using the left-side of a rule. The second part of the
closure function consists in verifying that for each substitution σ s.t. lσ →∗

∆ q,
we also have rσ →∗

∆ q. This job is performed using the all_red function, we

define, whose purpose is to check that this property is true for all the found
substitutions. Then, we only need to prove the soundness of this function using
the following Coq theorem:

Theorem all_red_sound :
∀ D q r sigmas,

all_red D q r sigmas = true → ∀ s, In s sigmas → IsRed D q (r@s).

By combining the matching and the all_red functions, we obtain closure_at_state

the function for checking up all critical pairs found at state q and for the rule
l → r. We define the combination as:

Definition closure_at_state D q l r := all_red D q r (matching D q l).

Theorem closure_at_state_sound :
∀ D q l r, linear l → closure_at_state D q l r = true →

(∀ s, IsRed D q (l @ s) → IsRed D q (r @ s)).

Given a left-linear rule l → r and a state q, this algorithm answers true

if for all substitution σ : X 7→ Q s.t. lσ →∗
∆ q then rσ →∗

∆ q. Now that we
have proved this result for substitutions σ : X 7→ Q, we have to prove that it
implies the same property for substitutions σ′ : X 7→ T (F), this is Lemma 3.
On the opposite, to prove that every reachable term of T (F) will be covered
by a configuration of T (F ∪Q) in ∆, we have to prove that if there exists a
substitution σ′ : X 7→ T (F), then we can construct a corresponding substitution
σ : X 7→ Q, this is Lemma 4.

Lemma 3. Given a term u ∈ T (F ,X), σ : X 7→ Q a substitution s.t. uσ →∗
∆ q,

if we have a substitution σ′ : X 7→ T (F) s.t. ∀x ∈ Dom(σ) : σ′x ∈ L(∆, σx),
then we have uσ′ →∗

∆ q and thus uσ′ ∈ L(∆, q).

Roughly, if the left or right-hand side u of a rewriting rule matches a config-
uration uσ ∈ T (F ∪Q) and uσ →∗

∆ q then, all terms uσ′ ∈ T (F), matched by
u, are also reducible into q, i.e. uσ′ →∗

∆ q and uσ′ ∈ L(∆, q).

Lemma 4. Given a term u ∈ T (F ,X), if there exists a substitution σ′ : X 7→
T (F) such that uσ′ →∗

∆ q, then there exists a substitution σ : X 7→ Q s.t.
σ′x ∈ L(∆, σx) and uσ →∗

∆ q.

Using those two lemmas, we can conclude that for all term t ∈ L(∆, q)
rewritten in t′ at the topmost position by l → r, then t′ ∈ L(∆, q). This property
is easily lifted as a property of the closure function for all states of Q and using
all rules of R at topmost position. Then, it is enough to lift this property to
general rewriting at any position. Finally, the closure_sound general theorem
is shown by using a reflexive and transitive application of the last property.

9 Benchmarks

From the Coq formal specification (about 2000 lines for definitions and 5500
lines for proofs), we have extracted an Ocaml checker implementation which is

connected to the Timbuk parser. Since Coq extraction ignore all Ocaml data
types (integers, lists, maps...) and redefine all them (including primitive types).
Thus, we defined a set of functions to convert Coq types into Ocaml types and
conversely.

In the following table, we have collected several benchmarks. For each test, we
give the size of the two tree automata (initial A0 and completed A∗R) as number
of transitions/number of states. For each TRS R we give the number of rules.
The ’CS’ column gives the number of completion steps necessary to complete
A0 into A∗R and ’CT’ gives the completion time. The ’CKT’ column gives the
time for the checker to certify the A∗R and the ’CKM’ gives the memory usage.
The important thing to observe here is that, the completion time is very long
(sometimes more than 24 hours), the checking of the corresponding automaton
is always fast (a matter of seconds).

The four tests are Java programs translated into term rewriting systems us-
ing the technique detailed in [BGJL07]. All of them are completed using Timbuk
except the example List2.java which has been completed using a new opti-
mized completion tool detailed in [BBGM08]. In this last paper, the completion
times are 10 to 100 times better than using Timbuk. Even if the input and
output of this tool are tree automata, the internal computation mechanism is
exclusively based on term rewriting and uses no tree automata algorithms. This
shows that the completed automaton produced by a totally different algorithm
and fully optimized tool is also accepted by our checker. The List1.java and
List2.java corresponds to the same Java program but with slightly differ-
ent encoding into TRS and approximations. The Ex poly.java is the example
given in [BGJL07] and the Bad Fixp is the same problem as Ex poly.java ex-
cept that the completed automaton A∗R has been intentionally corrupted. Thus,
this is thus not a valid fixpoint and rejected by the checker.

Name A0 A∗R R CS CT CKT CKM
List1.java 118/82 422/219 228 180 ≈ 3 days 0,9s 2,3 Mo
List2.java 1/1 954/364 308 473 1h30 2,2s 3,1 Mo
Ex poly.java 88/45 951/352 264 161 ≈ 1 day 2,5s 3,3 Mo
Bad Fixp 88/45 949/352 264 161 ≈ 1 day 1,6s 3,2 Mo

10 Conclusion and further research

In this paper we have defined a Coq checker for tree automata completion. The
first characteristic of the work presented here is that the checker does not vali-
date a specific implementation of completion but, instead, the result. As a conse-
quence, the checker remains valid even if the implementation of the completion
algorithm changes or is optimized. For example, this checker could be used to
certify tree automata produced by [Jac96,Ret99] and [Tak04] for left-linear TRS,
provided that ε-transitions are normalized first. This is quite natural since the
behavior of those algorithms is close to tree automata completion. We gave an
even more significant example of the independence of the checker w.r.t. the used

completion algorithm by certifying results produced by [BBGM08] whose algo-
rithm is not based on tree automata.

A second salient feature of the checker is that its code is directly gener-
ated from the correctness proof of its Coq specification through the extraction
mechanism. Third, we have payed particular attention to the formalization of the
checker in order not to lose efficiency to obtain the certification. We have defined
a specific inclusion algorithm in order to avoid the usual exponential blow-up
obtained with the standard inclusion algorithm. We have defined the Coq formal
specification so that it was possible to extract an independent OCaml checker.
Finally, we made an extensive use of efficient formal data structures leading to
more complex proof but also to faster extracted checker. An extension for non
left-linear TRS, which are necessary for specifying cryptographic protocols, is
under development. Since many different kinds of analyzes can be expressed as
reachability problems over tree automata, and since verification of completed
automata revealed to be very efficient, we aim at using this technique in a PCC
architecture where tree automata are viewed as program certificates. At last,
note that even if this checker is external to Coq, we can use the correction proof
of the checker and the Coq reflexivity mechanism to lift-up the external verifica-
tion into a proof in the Coq system. This can be necessary to perform efficient
unreachability proofs on rewriting systems in Coq using an external completion
tool.

References

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani,
S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santos Santiago,
M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the
automated validation of internet security protocols and applications. In
CAV’2005, volume 3576 of LNCS, pages 281–285. Springer, 2005.

[BBGM08] E. Ballad, Y. Boichut, T. Genet, and P.-E. Moreau. Towards an Efficient
Implementation of Tree Automata Completion. In AMAST’08, 2008. To
be published.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. Springer Verlag, 2004.

[BD04] G. Barthe and G. Dufay. A tool-assisted framework for certified bytecode
verification. In FASE’04, volume 2984 of LNCS, pages 99–113. Springer,
2004.

[BGJ08] B. Boyer, T. Genet, and T. Jensen. Certifying a Tree Automata
Completion Checker. Technical Report RR 6462, INRIA, 2008.
http://hal.inria.fr/inria-00258275/fr/.

[BGJL07] Y. Boichut, T. Genet, T. Jensen, and L. Leroux. Rewriting Approxima-
tions for Fast Prototyping of Static Analyzers. In RTA, volume 4533 of
LNCS, pages 48–62. Springer Verlag, 2007.

[BHK04] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Automatic Approxima-
tion for the Verification of Cryptographic Protocols. In Proc. AVIS’2004,
joint to ETAPS’04, Barcelona (Spain), 2004.

[BJP06] F. Besson, T. Jensen, and D. Pichardie. Proof-carrying code from cer-
tified abstract interpretation and fixpoint compression. Theor. Comput.
Sci, 364(3):273–291, 2006.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata/, 2002.

[CJPR05] D. Cachera, T. Jensen, P. Pichardie, and V. Rusu. Extracting a data
flow analyser in constructive logic. Theor. Comput. Sci., 342(1):56–78,
2005.

[FGVTT04] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. JAR, 33 (3-4):341–383, 2004.

[Gen97] T. Genet. Decidable approximations of sets of descendants and sets of
normal forms (extended version). Technical Report RR-3325, INRIA,
1997.

[Gen98] T. Genet. Decidable approximations of sets of descendants and sets of
normal forms. In Proc. 9th RTA Conf., Tsukuba (Japan), volume 1379
of LNCS, pages 151–165. Springer-Verlag, 1998.

[GK00] T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verifica-
tion. In Proc. 17th CADE Conf., Pittsburgh (Pen., USA), volume 1831
of LNAI. Springer-Verlag, 2000.

[GT95] R. Gilleron and S. Tison. Regular tree languages and rewrite systems.
Fundamenta Informaticae, 24:157–175, 1995.

[GTTVTT03] T. Genet, Y.-M. Tang-Talpin, and V. Viet Triem Tong. Verification of
Copy Protection Cryptographic Protocol using Approximations of Term
Rewriting Systems. In WITS’2003, 2003.

[GVTT00] T. Genet and V. Viet Triem Tong. Timbuk 2.0 – a Tree
Automata Library. IRISA / Université de Rennes 1, 2000.
http://www.irisa.fr/lande/genet/timbuk/.

[Jac96] F. Jacquemard. Decidable approximations of term rewriting systems.
In H. Ganzinger, editor, Proc. 7th RTA Conf., New Brunswick (New
Jersey, USA), pages 362–376. Springer-Verlag, 1996.

[KN03] G. Klein and T. Nipkow. Verified bytecode verifiers. TCS, 298, 2003.
[LT00] P. Letouzey and L. Théry. Formalizing stalmarck’s algorithm in coq. In

Proc. of TPHOL’00, volume 1869 of LNCS. Springer, 2000.
[Ret99] P. Rety. Regular Sets of Descendants for Constructor-based Rewrite

Systems. In Proc. 6th LPAR Conf., Tbilisi (Georgia), volume 1705 of
LNAI. Springer-Verlag, 1999.

[RGL01] X. Rival and Jean Goubault-Larrecq. Experiments with finite tree au-
tomata in coq. In Proc. of TPHOL’01, LNCS. Springer, 2001.

[Tak04] T. Takai. A Verification Technique Using Term Rewriting Systems and
Abstract Interpretation. In Proc. 15th RTA Conf., Aachen (Germany),
volume 3091 of LNCS, pages 119–133. Springer, 2004.

[ZD06] R. Zunino and P. Degano. Handling exp, × (and timestamps) in protocol
analysis. In Proc. of FOSSACS’06, volume 3921 of LNCS, pages 413–427.
Springer, 2006.

