
Equational Approximations for

Tree Automata Completion

Thomas Genet

IRISA/Université de Rennes 1, Campus Beaulieu, F-35042 Rennes Cedex

Vlad Rusu

IRISA/INRIA, Campus Beaulieu, F-35042 Rennes Cedex

Abstract

In this paper we deal with the verification of safety properties of infinite-state systems modeled
by term-rewriting systems. An over-approximation of the set of reachable terms of a term-
rewriting system R is obtained by automatically constructing a finite tree automaton. The
construction is parameterized by a set E of equations on terms, and we also show that the
approximating automata recognize at most the set of R/E-reachable terms. Finally, we present
some experiments carried out with the implementation of our algorithm. In particular, we show
how some approximations from the literature can be defined using equational approximations.

Key words: Verification, Term rewriting systems, Reachability, Tree automata, Rewriting
modulo equations

1. Introduction, motivation, and related work

Designing verification techniques that are able to handle infinite-state systems is a
major challenge. In particular, techniques based on tree automata have been proposed.
In this framework, the system under verification is modeled by a term-rewriting system
(hereafter abbreviated as TRS) or a tree transducer, and verification can be performed us-
ing reachability analysis. Some techniques are based on tree automata completion (Feuil-
lade et al., 2004; Takai, 2004; Gallagher and Rosendahl, 2008); other techniques are
based on regular tree model checking (Bouajjani et al., 2006a). These techniques have

1 This research was partially supported by ANR grant number ANR-06-SETI-14

Email addresses: genet@irisa.fr (Thomas Genet), rusu@irisa.fr (Vlad Rusu).

URLs: www.irisa.fr/celtique/genet (Thomas Genet), www.irisa.fr/vertecs/Equipe/Rusu (Vlad

Rusu).

Preprint submitted to Elsevier May 14, 2012



been used for the verification of various kinds of programs, at various level of abstraction:
abstract models of distributed systems (Bouajjani and Touili, 2005), communication pro-
tocols (Bouajjani et al., 2006a), cryptographic protocols (Genet and Klay, 2000; Boichut
et al., 2004), low-level models of C programs (Bouajjani et al., 2006b) and of Java byte-
code programs (Boichut et al., 2007).

This paper continues a series of works on tree automata completion, proposed earlier
in (Feuillade et al., 2004; Genet, 1998; Genet and Viet Triem Tong, 2001a). We briefly
describe that approach and motivate the work in the present paper. Given a term lan-
guage defined by a tree automaton A, and a term rewriting system R, the tree automata
completion algorithm produces another tree automaton A∗R. For some specific classes of
TRS, A∗R recognizes exactly the language of terms that are reachable by rewriting withR
the terms recognized by A. Otherwise, the completed tree automaton A∗R recognizes an
over-approximation of those reachable terms. In (Genet, 1998) approximations are con-
structed automatically. In (Feuillade et al., 2004; Genet and Viet Triem Tong, 2001a),
the approximations are defined by the user under the form of normalization rules.

Experiments on non-trivial case studies (Genet et al., 2003; Boichut et al., 2007) have
been carried out with an implementation of the completion algorithm in the Timbuk
tool (Genet and Viet Triem Tong, 2001b). They have shown that normalization rules are
a useful approach for defining approximations. In particular, the rules can be adapted
to the program and the property being verified, which make them more flexible than
the automatic approximations of (Genet, 1998). However, defining a set of normalization
rules for a particular approximation remains a complex task. The main reason is that
normalization rules directly refer to the structure of tree automata. Hence, to define such
rules, the user needs to be highly familiar with the tree automata formalism.

In this paper, we replace normalization rules by equations as the main approximation
technique. The idea is inspired from equational abstractions in rewriting logic (Meseguer
et al., 2003) and from the rewriting modulo equations framework (Baader and Nipkow,
1998). We illustrate it on a simple example. Consider the TRS R = {f(x)→ f(s(s(x)))},
and assume that we want to prove that f(a) 6→R∗ f(s(a)). This cannot be done sim-

ply be enumerating all reachable terms, since there are infinitely many such terms.
However, a finite-state abstraction of the set of reachable terms can be simply ob-
tained by not distinguishing between the terms of the form s(s(x)) and the term x,
i.e., by using the equation E = {s(s(x) = x}. Then, all the terms reachable from f(a):
f(s(s(a))), f(s(s(s(s(a))))), . . . are equivalent modulo E and form a finite set (here, a sin-
gleton). To prove f(a) 6→R∗ f(s(a)) we just have to check that f(s(a)) is not in this set.

1.1. Related work

Regular tree languages have been used to analyze programs for a long time. As noted
by J. Gallagher & M. Rosendahl (Gallagher and Rosendahl, 2008), our tree automata
completion technique is very close to the flow analysis technique for functional pro-
grams (Reynolds, 1969; Jones and Andersen, 2007). These techniques are based on the
same principle: completion of a regular language. However, like in many static analy-
sis techniques, the approximation used in (Reynolds, 1969; Jones and Andersen, 2007)
is built into the algorithm. By contrast, by using equations, we define approximations
independently of the algorithm. By changing the set of equations, it is possible to per-
form different analyses, tailored for verifying different properties. In Section 7 we show
that the analysis of (Jones and Andersen, 2007) can be prototyped using tree automata
completion and a definition of their approximation using equations.

Another very efficient completion procedure, proposed in (Gallagher and Rosendahl,
2008), is based on an encoding of both tree automata and term-rewriting systems into
Horn clauses. This encoding allows the authors to use state-of-the-art static analysis tools
for logic programs to perform approximations.

2



The rewriting-modulo framework implemented in the Maude tool (Clavel et al., 2007)
leads quite naturally to equational abstractions (Meseguer et al., 2003): new equations
are added to the set of equations defining the system’s state in order to make the sys-
tem finite-state. However, in order to be over-approximations as required by verification,
equational abstractions have to fit in the general rewriting-modulo framework of Maude.
That is, the new set of equations, which consists of equations defining the state of the sys-
tem, and of the approximating equations, must be ground confluent and terminating and
must be ground coherent with respect to the TRS modeling the program under verifica-
tion (coherence is condition similar to confluence). Such properties are undecidable, and
the user must check them manually or by interacting with specialized tools. By contrast,
we only require the syntactical condition of left-linearity on our term-rewriting systems,
and impose no condition on equations. On the other hand, equational abstractions are
able to deal with temporal-logic properties, which are not considered yet in our approach.

The use of equations for approximating with tree automata was already experimented
in (Takai, 2004) but with strong syntactical restrictions on their form.

Several works are considering the transformation of tree automata using tree trans-
ducers rather than term rewriting systems. Those works are commonly known as Regular
Tree Model-Checking. In this setting, model checking consists in building the tree au-
tomaton representing any number of applications of the tree transducer. This automaton
can be constructed either by iterating the tree transducer like in (Bouajjani and Touili,
2002) or directly by computing the closure of the tree transducer (Abdulla et al., 2006).

Finally, the present work deals only with fixed-rank symbols. Reachability analysis
can be performed on variadic terms using hedge automata, in an exact or approximated
way (d’Orso and Touili, 2006; Genest et al., 2008; Jacquemard and Rusinowitch, 2008).

1.2. Contributions

The first contribution is to define equational approximations of tree automata. We
propose an algorithm that, given an automaton A, a term rewriting system R and a set
of equations E, computes a tree automaton denoted by A∗R,E . The second contribution
consists in proving lower and upper bounds for the language L(A∗R,E):
• We prove that a lower bound for L(A∗R,E) is R∗(L(A)), i.e., the set of terms reachable

by rewriting using R the terms recognized by A. This lower bound enables us to verify
safety properties: assume the automaton A represents the set of initial states of a
system whose dynamics is defined by a TRS R, and the safety property to be verified
is that some “unsafe” states, recognized by a tree automaton A′, are unreachable. We
verify the property by checking that the intersection L(A∗R,E)∩L(A′) is empty. If this
is the case, then, due to the inclusionR∗(L(A)) ⊆ L(A∗R,E) established here, we obtain
that the intersection R∗(L(A)) ∩ L(A′) is also empty, i.e., the property is satisfied.

• Assuming that A satisfies a technical condition called R/E-coherence, we prove that
an upper bound for L(A∗R,E) is R∗E(L(A)), i.e. the set of terms reachable by rewriting
with R modulo E the language of A. This upper bound demonstrates the precision
of our approximation: it shows that the computed approximation stays within the
“expected” approximation induced by the equations E. Note that our objective is not
to compute the set of terms R∗E(L(A)), but only a subset of it containing L(A∗R,E)
- the smaller the subset, the more precise the approximation. For two terms s and t
such that s =E t, if s is reachable, but t is not, our over-approximation of R∗(L(A))
may contain s but not contain t. This is more precise than R∗E(L(A), which contains
both terms since s→R/E t.
The third contribution is an implementation of the completion algorithm in the Timbuk

tool and some experiments. The experiments show that approximations defined using our
former formalism (Genet and Viet Triem Tong, 2001a), can be described in a more concise
way using equations. We also show that some theoretical static analyzes of the literature,
based on regular languages, can easily be implemented using equations.

3



1.3. Outline

Section 2 covers prerequisites for term-rewriting systems and tree automata. Section 3
defines simplification, which corresponds to the application of a set of equations to a tree
automaton. Section 4 defines R/E-coherence, which is a key property for proving our
precision result. We prove that the simplification operation preserves the R/E-coherence
property. In Section 5 we define our “basic” tree automata completion algorithm (without
simplification). We show that the completion operation preserves the R/E-coherence
property as well. Then, in Section 6 we present our main algorithm, which alternates
simplification steps and completion steps and produces the automaton A∗R,E . We prove
the inclusions R∗(L(A)) ⊆ L(A∗R,E) and L(A∗R,E) ⊆ R∗E(L(A)). Finally, in Section 7 we
present some experiments with an implementation of our main algorithm in Timbuk.

2. Preliminaries

Comprehensive surveys can be found in (Dershowitz and Jouannaud, 1990; Baader
and Nipkow, 1998) for term-rewriting systems, and in (Comon et al., 2008; Gilleron and
Tison, 1995) for tree automata and tree language theory.

Let F be a finite set of symbols, each associated with an arity, and let X be a countable
set of variables. T (F ,X ) denotes the set of terms, and T (F) denotes the set of ground
terms (terms without variables). The set of variables of a term t is denoted by Var(t).
A substitution is a function σ from X into T (F ,X ), which can be uniquely extended to
an endomorphism of T (F ,X ) also denoted by σ. A term rewriting system R is a set of
rewrite rules l→ r, where l, r ∈ T (F ,X ), l 6∈ X , and Var(l) ⊇ Var(r). A set of equations
E is a set of pairs of the form l = r where l, r ∈ T (F ,X ). We assume that the application
of a substitution on a term, and the rewriting of a term with a rule, are known to the
reader. A rewrite rule l→ r is left-linear (resp. right-linear) if each variable of l (resp. r)
occurs only once in l (resp. r). A TRS R is left-linear if every rewrite rule l → r of R
is left-linear. A set of equations is linear if all members of all equations are linear. The
TRS R induces a rewriting relation →R on terms whose reflexive-transitive closure is
denoted by →∗R.

Definition 1 (E-equivalence). For two ground terms t, t′ ∈ T (F) and an equation
e : l = r, we say that t =e t

′ if there exists a substitution τ : X 7→ T (F) such that lτ = t
and rτ = t′. The equivalence relation =E⊆ T (F) × T (F) is the smallest congruence
containing the relation {(t, t′) ∈ T (F)× T (F)|∃e ∈ E. t =e t

′}. �

Definition 2 (R-descendants). The set of R-descendants of a language L ⊆ T (F) is
R∗(L) = {t ∈ T (F) | ∃s ∈ L. s→∗R t}. �

Note that R∗(L) is possibly infinite: R may not terminate and/or L may be infinite,
and the setR∗(L) is not regular in general (Gilleron and Tison, 1995). TheR-descendants
of a language can be approximated by its set of R/E-descendants, defined as follows:

Definition 3 (R/E-descendants). Given a TRS R and a set of equations E, the relation
→R/E⊆ T (F)×T (F) is defined by s→R/E t if there exist s′, t′ ∈ T (F) such that s =E

s′ →R t′ =E t. The relation →∗R/E is the reflexive-transitive closure of (→R/E ∪ =E).

The set of R/E-descendants of a language is R∗E(L) = {t ∈ T (F) | ∃s ∈ L s.t. s →∗R/E
t}. �

We now define tree automata. Let Q be a finite set of symbols with arity 0, called
states, such that Q∩ F = ∅. T (F ∪Q) is called the set of configurations.

4



Definition 4 (Transition, normalized transition, and ε-transition). A transition is a
rewrite rule c→ q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q. A normalized
transition is a transition c → q where c = f(q1, . . . , qn), for syme symbol f ∈ F whose
arity is n, and q1, . . . , qn ∈ Q. An ε-transition c→ q is such that c ∈ Q. �

Definition 5 (Tree automaton). A (bottom-up, non-deterministic, finite) tree automa-
ton, simply called a tree automaton or an automaton in the sequel, is a quadruple
A = 〈F ,Q,Qf ,∆〉, where Qf ⊆ Q and ∆ is a set of normalized transitions and of
ε-transitions. �

The rewriting relation on T (F ∪Q) is that induced by the transitions ∆ of A and
is denoted by is →∆ or simply by →A. Similarly, we often write c → q ∈ A instead of
c→ q ∈ ∆, and q ∈ A instead of q ∈ Q, where Q is the set of states of A.

Definition 6 (Recognized language). The tree language recognized by A in a state q is
L(A, q) = {t ∈ T (F) | t→∗A q}. The language recognized by A is L(A) =

⋃
q∈Qf

L(A, q).
�

We also define ε- and ε-free derivations, which are necessary both for the new comple-
tion algorithm and the application of equations to a tree automaton.

Definition 7 (ε- and ε-free derivations). We denote by
ε→A one-step rewritings per-

formed by using an ε-transition of A, and by→ 6εA one-step rewritings performed by using

a transition of A other than an ε-transition. The relation
ε→
∗
A is the reflexive transitive-

closure of
ε→, and the relation →6ε ∗A is the reflexive transitive-closure of →6εA. �

The completion and simplification operations, defined later in the paper, rely on spe-
cific substitutions that map variables to states.

Definition 8 (Sets Σ(Q,X ) and Σ(T (F),Q)). The set Σ(Q,X ) (resp. Σ(T (F),Q))
contains all substitutions mapping a variable of X to a state of Q (resp. a state of Q to
a ground term of T (F)). �

Example 9 (Tree automaton, recognized language, and substitutions). Let F = {f, a, b}
and A = 〈F ,Q,Qf ,∆〉, where Q = {q1, q2}, Qf = {q1}, and ∆ = {f(q1) → q1, a →
q1, b → q2, q2 → q1}. The languages recognized by q1 and q2 are the following: L(A, q1)
is the set of terms built on {f, a, b}, i.e. L(A, q1) = T ({f, a, b}), and L(A, q2) = {b}.
We can also note that f(b) →A∗ q1, b → 6ε ∗A q2 and f(b) 6→ 6ε ∗A q1. The substitution

σ = {x 7→ q1, y 7→ q2} belongs to Σ(Q,X ) and f(x, y)σ = f(q1, q2).

3. Simplification of Tree Automata by Equations

In this section, we define the simplification operation of a tree automaton A with
respect to a set of equations E. We prove that the simplification of an automaton has the
effect of over-approximating the recognized language of the automaton. The simplification
operation is based on renaming states.

Definition 10 (Renaming states in tree automata). Let Q,Q′ be sets of states, A =
〈F ,Q,Qf ,∆〉 be a tree automaton, and α a function α : Q 7→ Q′. We denote by Aα the
tree automaton where every occurrence of q is replaced by α(q) in Q, Qf and in every
left and right-hand side of every transition of ∆. �

When α = {qa 7→ qb}, A′ = Aα is the automaton where every occurrence of qa has
been replaced by qb.

5



Example 11. Let A = 〈F ,Q,Qf ,∆〉 with Q = {q0, q1}, Qf = {q0} and ∆ = {f(q1)→
q0, f(q0) → q0, a → q1}. A{q0 7→ q2} = 〈F ,Q′,Q′f ,∆′〉 with Q′ = {q1, q2}, Q′f = {q2}
and ∆ = {f(q1)→ q2, f(q2)→ q2, a→ q1}.

The following lemma shows that every term recognized in A is also recognized in A′.

Lemma 12. Let A,A′ be tree automata and q, qa, qb states of A such that A′ = A{qa 7→
qb}. For all terms t ∈ T (F ∪Q):

• if t→ 6ε ∗A q then t{qa 7→ qb} →6ε ∗A′ q{qa 7→ qb}
• if t→A∗ q then t{qa 7→ qb} →∗A′ q{qa 7→ qb}

Proof. We sketch the proof for t{qa 7→ qb} →A∗ q =⇒ t →∗A′ q{qa 7→ qb}. The proof

for the other case is simpler. We proceed by structural induction on the term t.
(1) In the base case, t is either a constant or a state.

(a) if t is a state then the derivation t →A∗ q has the form t = q1
ε→
∗
A qn = q.

We prove by induction on the number of occurrences of qa in that derivation

that q1
ε→
∗
A′ qn. The base case is trivial because, then, all transitions of A

used in the derivation q1
ε→
∗
A qn are also transitions of A′. For the induction

step, let k ∈ {1, . . . , n} be the index of the “next” occurrence of qa in our
sequence. We need to distinguish several cases, depending on whether (k = 1
or k > 1) and (k < n or k = n). We show the proof for the case when

k > 1 and k < n. On the one hand, there exist derivations q1
ε→
∗
A qk−1

and qk+1
ε→
∗
A qn with fewer instances of qa, and by induction hypothesis,

q1
ε→
∗
A′ qk−1 and qk+1

ε→
∗
A′ qn On the other hand, by definition of renaming,

the transitions qk−1 → qa and qa → qk+1 of A are replaced in A′ by qk−1 → qb
and qb → qk+1. Hence, q1

ε→
∗
A′ qk−1 →A′ qb →A′ qk+1

ε→
∗
A′ qn, i.e., q1

ε→
∗
A′ qn,

which proves the result in this case. The remaining cases are similar.

(b) if t is a constant then t→A∗ q has the form t→A q1
ε→
∗
A qn = q. Regarding the

first step, t→A q1 implies that there exists a transition t→ q1 ∈ ∆. If q1 6= qa

then t→ q1 ∈ ∆′ and t→A′ q1. For the suffix q1
ε→
∗
A qn we obtain like in case

1(a) that q1
ε→
∗
A′ qn, and the result follows. If q1 = qa then t → qb ∈ ∆′, and

we obtain again like in case 1(a) that qb
ε→
∗
A′ qn and the result follows as well.

(2) if t = f(t1, . . . , tn), from t →A∗ q and the definition of tree automata derivation,

there exists a rule f(q1, . . . , qn) → q0 ∈ ∆ and a derivation using ε-transitions

only: q0
ε→
∗
A q such that f(t1, . . . , tn) →A∗ q0

ε→
∗
A q. From q0

ε→
∗
A q we obtain

like in case 1(a) that q0
ε→
∗
A′ q. From the derivation f(t1, . . . , tn) →A∗ q0 we

obtain that there exist states q1, . . . , qn such that ti →A∗ qi for i = 1, . . . , n, and

by induction hypothesis, ti{qa 7→ qb} →∗A′ qi for i = 1, . . . , n. By definition of
renaming f(q1{qa 7→ qb}, . . . , qn{qa 7→ qb}) → q0{qa 7→ qb} ∈ ∆′. Hence, t{qa 7→
qb} = f(t1{qa 7→ qb}, . . . , tn{qa 7→ qb})→∗A′ q0

ε→
∗
A′ q, which completes the proof.

2

Now we define the simplification operation, which merges states in a tree automaton
according to an equation and a substitution.

Definition 13 (Simplification). Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton and E be a
set of equations. The simplification operation, denoted by ;E , is defined as follows:
A ;E A′ if there exist distinct states q1, q2 ∈ Q, an equation s = t ∈ E, and a

6



substitution σ ∈ Σ(Q,X ), such that sσ →6ε ∗A q1, tσ →6ε ∗A q2, and A′ = A{q1 7→ q2}.
We identify the operation ;E with a relation on tree automata in the obvious way. �

sσ
E

A,6ε ∗
��

tσ

∗ A, 6ε
��

q1 q2

Example 14. Let A be a tree automaton such that ∆ = {f(q1, q2) → q0, a → q1, a →
q2, g(q1)→ q3}.
• If E = {g(x) = a}, we have σ = {x 7→ q1} and

g(q1)
E

A, 6ε ∗

��

a

∗ A,6ε

��
q3 q2

Hence, A;E A′ where A′ = A{q3 7→ q2}.
• If E = {f(x, x) = g(x)} then there is no substitution σ such that f(x, x)σ = f(q1, q2):

the automaton is unchanged, and a is still recognized in two distinct states (q1 and q2).

The last example shows that simplification does not always fully reduce the automaton

(here, one would expect the states q1 and q2 to be merged by any set of equations, but

this is not the case). This limitation has no incidence on the results in this paper; in

particular, we do not require the equations in the set E to be linear.

Definition 15. An automatonA is in normal form with respect to ;E if for all automata

A′′: A′ 6;E A′′. We denote by ;∗E the reflexive-transitive closure of the relation ;∗E .

For tree automata A,A′, we write A;!
E A′ when A;∗E A′ and A′ is in normal form. �

Lemma 16. For all tree automata A,A′, all set of equations E and state mappings α,

such that A;∗E A′ and A′ = Aα: L(A, q) ⊆ L(Aα, qα).

Proof. By induction on the length of the sequence ;∗ E. The base case is trivial, and

the inductive step uses Lemma 12. 2

To build approximations we repeatedly apply the simplification operation until a nor-

mal form is obtained. The termination of the procedure is based on the following lemma.

Lemma 17. The simplification relation ;E is well founded.

Proof. Each step of simplification A;E A′ reduces the number of states by one . 2

Although it is not essential for our main algorithm, we can also prove that repeated

simplifications lead to a unique normal form up to isomorphism, where two automata

A,A′ are isomorphic if there exists a bijection α such that A′ = Aα. For this, we prove

the local confluence up to isomorphism of the ;E relation. Together with termination,

this implies confluence up to isomorphism. Details of the proof can be found in the

report (Genet and Rusu, 2009).

Lemma 18. The relation ;E is locally confluent modulo isomorphism.

7



4. R/E-coherent Tree Automata

We define in this section the notion of R/E-coherence of tree automata. The main
result in this section is that simplification preserves R/E coherence. This result, together
with a similar result for the completion operation proved in the next section, is crucial
for proving the precision of our completion algorithm with equational approximations.

Definition 19 (R/E-coherent automaton). Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton,
R a TRS and E a set of equations. The automaton A is said to be R/E-coherent if for

all states q ∈ Q, there exists a term s ∈ T (F) such that s→ 6ε ∗A q, and for all t ∈ T (F):

t→ 6ε ∗A q =⇒ s =E t and

t→A∗ q =⇒ s→∗R/E t.

�

In the following, any term s such that s→ 6ε ∗A q is called a representative of q inA. The first
implication in Definition 19 says that R/E-coherent automata have the property that all
states have at least one representative, and all representatives of a state are equal modulo
E. For automata having this property, we denote by repA(q) an arbitrary representative
of a state q in the automaton A. We now illustrate the notion of R/E-coherence.

Example 20. Any automaton without ε-transitions, such that each term in its language
is recognized in a different state, isR/E-coherent, for any TRSR and equation system E.
For example, the automaton whose states are Q = Qf = {q1, q2} and transitions are
a→ q1, b→ q2, is so. This observation is important, because it implies that our precision
result, which depend of R/E-coherence preservation, holds for systems having finitely
many initial states (encoded by an automaton reconizing a finite language). On the other
hand, the same automaton as above, enriched with either (i) the additional transition
b→ q1, or (ii) an additional state q3, is not R/E-coherent (for R and E being the empty
TRS and equation set, respectively): in the case (i) because a, b are both recognized in
q1 and are not equal modulo E, and in the case (ii) because q3 does not recognize any
term. The automaton (i) becomes R/E-coherent with E = {a = b}. Finally, to illustrate
the second implication in Definition 19 of R/E-coherence, consider the automaton with
states Q = {q1, q2}, final states Qf = {q1}, and transitions a→ q1, b→ q2, q2 → q1. For
any system of equations E, this automaton is not R/E-coherent if R = ∅. On the other
hand, the automaton is R/E-coherent when R = {a→ b}, for any equation system E.

The next lemma is a simple consequence of Definition 19 and further illustrates it.

Lemma 21. If an automaton A is R/E-coherent then, for all states q of A and all
representatives repA(q) of the state q, the inclusion L(A, q) ⊆ R∗E(repA(q)) holds.

Lemma 21 will be used in a later section for proving our precision result. The rest of this
section is mainly dedicated to showing that the simplification preserves R/E-coherence.
The next lemma says that, for R/E-coherent automata, simplification renames states
into states having the same representatives.

Lemma 22. Let A,A′ be automata such that A is R/E-coherent, A;E A′, and A′ =
A{qa 7→ qb}. Then, for all representatives repA(qa) of qa and repA(qb) of qb in A,
repA(qa) =E repA(qb).

Proof. By Definition 13, A ;E A′ and A′ = A{qa 7→ qb} means that there exist an

equation s = t ∈ E and a substitution σ ∈ Σ(Q,X ) such that sσ = tσ, sσ →6ε ∗A qa, and

tσ →6ε ∗A qb. Let q1, . . . , qn be the states occuring in the term sσ, and q′1, . . . , q
′
m be the

8



states occuring in the term tσ. We consider a substitution ρ that maps each state qi and
q′i to a representative of it in A. Then, sσρ = tσρ, sσρ is a representative of qa in A,
and tσρ is a representative for qb, in A. The conclusion follows from the fact that all
representatives of a state are equal modulo E in R/E-coherent automata. 2

The next lemma focuses on the representatives of states occurring in transitions.

Lemma 23. Let A,A′ be automata such that A is R/E-coherent, A ;E A′ and A′ =
A{qa 7→ qb}. Then,

(1) for all transitions of the form c → q′ ∈ A′, where c is a constant, there exists a
transition c→ q ∈ A, such that repA(q) =E repA(q ′);

(2) for all transitions of the form f(q′1, . . . q
′
n) → q′0 ∈ A′, there exists a transition

f(q1, . . . qn)→ q0 ∈ A such that repA(qi) =E repA(q ′i) for all i = 0, . . . , n.

Proof. We prove the second statement; the proof of the first one is even simpler. By
definition of renaming, the transition f(q′1, . . . q

′
n) → q′0 of A′ has been obtained from

some transition f(q1, . . . qn) → q0 of A, by renaming all the states qi = qa into q′i = qb.
We partition the states qi (i = 0, . . . , n) of A into
• states qi such that qi = qa: then, q′i = qb, and by Lemma 22, repA(qa) =E repA(qb),

hence, repA(qi) =E repA(q ′i);
• states qi such that qi 6= qa. In those states, the renaming {qa 7→ qb} has no effect,

hence, qi = q′i and a fortiori repA(qi) =E repA(q ′i).
2

Proving that the simplification preserves R/E-coherence amounts to proving that it
preserves both implications in Definition 19. The first “half” of the proof deals with the
first implication, and the second “half” of the proof deals with the second implication.
Both “halves” of the proof use structural induction as well as the two following lemmas.

Lemma 24. Let A,A′ be automata such that A is R/E-coherent, A;E A′, and A′ =
A{qa 7→ qb}. Let also c → q′ ∈ A′ where c is a constant. Then, for all representatives
repA(q ′): c =E repA(q ′).

Proof. By Lemma 23 (1st item), the corresponding transition c → q ∈ A is such that
repA(q) =E repA(q ′). Now, c→ q ∈ A implies that c is a representative of q in A, and all
representatives of a state in the R/E-coherent automaton A are equal modulo E, hence,
c =E repA(q), and c =E repA(q′) follows by transitivity of =E . 2

Lemma 25. Let A,A′ be automata such that A is R/E-coherent, A;E A′, and A′ =
A{qa 7→ qb}. Let also f(q′1, . . . q

′
n)→ q′0 ∈ A′ be a transition of the automaton A′. Then,

for all representatives repA(q ′0 ), . . . , repA(q ′n): f (repA(q ′1 ), . . . repA(q ′n)) =E repA(q ′0 ).

Proof. Note first that the representatives repA(q′i) exist sinceA isR/E-coherent and the
states q′i of A′(= A{qa 7→ qb}) are also states of A. By Lemma 23 (2nd item), the state-
ment to prove in our lemma amounts to proving f (repA(q1 ), . . . repA(qn)) =E repA(q0 ).

By definition of representatives, repA(qi)→ 6ε ∗A qi for i = 0, . . . , n, and since f(q1, . . . qn)→
q0 is a transition of A, we obtain f (repA(q1 ) . . . repA(qn))→ 6ε ∗A q0 , meaning that the term
f (repA(q1 ), . . . repA(qn)) is a representative of q0 in A. The conclusion follows by the
property that all representatives of state q0 in the automaton A are equal modulo E. 2

The next lemma establishes the first “half” of the preservation of R/E-coherence. We
actually prove that the representatives of a state after simplification are equal (modulo
the equations E) to the representatives of the corresponding state before simplification.

9



Lemma 26. Let A,A′ be automata such that A is R/E-coherent, and such that A;E A′
and A′ = A{qa 7→ qb}. Then, for all states q′ ∈ Q′ and representatives repA(q ′) of q′ in

A, repA(q ′)→6ε ∗A′ q′ holds, and for all terms t ∈ T (F), t→6ε ∗A′ q′ implies t =E repA(q ′).

Proof. The first part of the statement: repA(q ′)→6ε ∗A′ q′ holds because, as any represen-

tative of q′ in A, repA(q ′)→ 6ε ∗A q′, and Lemma 16 implies that every term recognized by
the automaton A in a state q′ ∈ Q′ is recognized by the automaton A′ in the same state.

For the second part of the statement we proceed by induction on the term t.
• if t is a constant, then t→ 6ε ∗A′ q′ means that there exists a transition t→ q′ ∈ A′, and
t =E repA(q′) follows by Lemma 24.

• if t = f(t1, . . . , tn), then t → 6ε ∗A q′ means there exists f(q′1, . . . , q
′
n) → q′ ∈ A′ such

that ti → 6ε ∗A′ q′i for i = 1, . . . n. By induction hypothesis, ti =E repA(q ′i) for i =
1, . . . n. Hence, t =E f (repA(q ′1 ), . . . , repA(q ′n)) by congruence of =E . By Lemma 25,
f (repA(q ′1 ), . . . , repA(q ′n)) =E repA(q ′), and t =E repA(q′) follows by transitivity.
2

As a consequence of Lemma 26, all representatives of a state q′ in Q′ are equal modulo
E, and we can legitimately use the notation repA′(q ′) to denote an arbitrarily chosen
representative of q′ in A′. Note also that Lemma 26 implies repA′(q ′) =E repA(q ′).

We proceed to the second “half” of proving the preservation of R/E-coherence. The
next two lemmas deal with derivations by ε-transitions that occur in the definition of
R/E-coherence: first, by using only one transition, and then by using several transitions.

Lemma 27. Let A,A′ be automata such that A is R/E-coherent, A;E A′, and A′ =
A{qa 7→ qb}. Let q′0 → q′1 ∈ A′ be an ε-transition of A′. Then, repA′(q ′1 )→∗R/E repA′(q ′0 ).

Proof. The transition q′0→q′1 ∈ A′ is obtained from some transition q0 → q1 ∈ A by
renaming its states. Using Lemma 22, repA(q ′0 ) =E repA(q0 ) and repA(q ′1 ) =E repA(q1 ).
Using Lemma 26, repA′(q ′0 ) =E repA(q ′0 ) and repA′(q ′1 ) =E repA(q ′1 ), and by transi-
tivity of =E , repA′(q ′0 ) =E repA(q0 ) and repA′(q ′1 ) =E repA(q1 ). Next, by definition of

representatives, repA(q0) → 6ε ∗A q0. Then, repA(q0) is also recognized by A in q1 using
the “additional” ε-transition q0→q1, that is, repA(q0)→A∗ q1. By R/E-coherence of A,

repA(q1)→∗R/E repA(q0). The result follows by Definition 3 of R/E rewriting. 2

Lemma 28. Let A,A′ be automata such that A is R/E-coherent, A;E A′, and A′ =

A{qa 7→ qb}. For all derivations of the form q′0
ε→
∗
A′ q′n, repA′(q′n)→∗R/E repA′(q′0).

Proof. By induction on the derivation q0
ε→
∗
A′ q′n. The base case holds because, by

Lemma 26, all representatives of a state in Q′ are equal modulo E. For the inductive step,

we decompose the derivation into q′0
ε→A′ q′1

ε→
∗
A′ q′n, i.e., the first step is performed using

an ε-transition q′0→q′1 ∈ A′. By Lemma 27, repA′(q ′1 )→∗R/E repA′(q ′0 ). By induction

hypothesis, repA′(q′n)→∗R/E repA′(q′1). The result follows by transitivity of →∗R/E . 2

We are now ready to prove the second “half” in the preservation of R/E-coherence.

Lemma 29. Let A,A′ be automata such that A is R/E-coherent, and such that A;E A′
and A′ = A{qa 7→ qb}. Then, for all states q′ ∈ Q′ and representatives repA′(q ′) of q′ in
A′, and for all terms t ∈ T (F), t→∗A′ q′ implies repA′(q ′)→∗R/E t.

Proof. By induction on the term t.

10



• if t is a constant, the derivation t →∗A′ q′ can be decomposed into t →A′ q̃′
ε→
∗
A′ q′,

where t → q̃′ ∈ A′. By Lemma 28, repA′(q′) →∗R/E repA′(q̃′). Using Lemma 26,

repA′(q̃ ′) =E repA(q̃ ′). By Lemma 24, repA(q̃′) =E t. The result repA′(q ′) →∗R/E t
follows by transitivity of =E and definition of →∗R/E .

• if t = f(t1, . . . , tn), then t →∗A′ q′ means that there exists f(q′1, . . . , q
′
n) → q′ ∈

A′ such that ti →∗A′ q′i for i = 1, . . . n. By Lemma 26 and induction hypothesis,
repA(q′i) =E repA′(q′i)→∗R/E ti for i = 1, . . . n, then, f (repA(q ′1 ), . . . , repA(q ′n))→∗R/E
f(t1, . . . , tn) = t. By Lemmas 25 and 26, f (repA(q ′1 ), . . . , repA(q ′n))=E repA(q ′) =
repA′(q ′). The result follows by symmetry/transitivity of =E and definition of →∗R/E .
2

As a consequence of the definition of simplification and of Lemmas 26 and 29 we obtain

Theorem 30. Let A,A′ be tree automata, R a TRS, E a set of equations and qa, qb
states of A such that A ;E A′ and A′ = A{qa 7→ qb}. If A is R/E-coherent then A′
is R/E-coherent as well. Moreover, all states q′ of A′ are also states of A, and all
representatives of q′ in A′ are also representatives for q′ in A.

As a corollary to Theorem 30 we obtain that the simplified automaton A′, obtained by
applying simplification steps to an automaton A, preserves the representatives of states.

Corollary 31. Let A,A′ be automata such that A is R/E-coherent and such that
A;∗E A′ and A′ = Aα, where α is the composition of the state renamings occurring
in A;∗E A′. Then, for all states q of A, qα is a state of A′, and repA′(qα) =E repA(q).

Proof. It is enough to prove the result for one step of simplification A;E A′ - a simple
inductive argument does the rest. Then, A′ = A{qa 7→ qb}. From Theorem 30 we know
that A′ is R/E-coherent. If q 6= qa then q{qa 7→ qb} = q, which is a state of A′ since it
was not renamed. Again by Theorem 30, we know that repA′(q) is a representative of q
in A, which concludes the proof of the case q 6= qa. If q = qa then q{qa 7→ qb} = qb, which
is a state of A′ by Definition 10 of renaming. By Lemma 26, repA′(qb) =E repA(qb) and
by Lemma 22, repA(qb) =E repA(qa), and the transitivity of =E concludes the proof. 2

5. Tree Automata Completion Algorithm

In this section we define a tree automaton completion algorithm, which is a variant of
the algorithm defined in (Genet, 1998; Feuillade et al., 2004). Like for the simplification
operation, we prove that completion preserves R/E-coherence and the representatives
of states. These properties, together with the similar properties for the simplification
operation from the previous section, are used for proving the precision result for our
main algorithm (that combines simplification and completion) in the next section.

Given a tree automaton A and a TRS R, the tree automata completion algorithm,
proposed in (Genet, 1998; Feuillade et al., 2004), computes a sequence A0

R.A1
R . . .AkR, . . .

of automata such that if s ∈ L(AiR) and s→R t then t ∈ L(Ai+1
R ). If a fixpoint, i.e., an

automaton AkR such that R∗(L(AkR)) = L(AkR), is found, then L(AkR) ⊇ R∗(L(A0
R)),

and L(AkR) = R∗(L(A)) if R is in one of the classes defined in (Feuillade et al., 2004).
To build Ai+1

R from AiR, a completion step, which consists of finding critical pairs
between→R and→Ai

R
, is performed. For a substitution σ ∈ Σ(Q,X ) and a rule l→ r ∈

R, a critical pair is an instance lσ of l such that there exists q ∈ Q satisfying lσ →∗Ai
R
q,

lσ →R rσ, and rσ 6→∗Ai
R
q. Since R, AiR and the set Qi of states of AiR are finite, there

is only a finite number of critical pairs. For every critical pair detected between R and

11



AiR, the tree automaton Ai+1
R is built by adding new transitions. In (Genet, 1998), new

transitions are added such as to enable the ε-free derivation rσ → 6ε ∗Ai+1
R

q (cf. Figure 1).

In the new version of the algorithm, we add a new state q′, a ε-transition q′ → q, and
transitions that enable the ε-free derivation rσ → 6ε ∗Ai+1

R
q′ instead (cf. Figure 2).

lσ R
//

∗Ai
R, 6ε
��

rσ

∗
Ai+1

R , 6εnnq

Figure 1. Old completion algorithm: new terms are recognized (ε-free) in old states.

lσ R
//

∗Ai
R, 6ε

��

rσ

∗ Ai+1
R , 6ε
��

q q′
Ai+1

R

oo

Figure 2. New completion algorithm: new terms are recognized (ε-free) in new states.

The new completion operation is required because our precision result requires us to
prove that completion preserves R/E-coherence. But the automata generated by the
completion algorithm of (Genet, 1998) are not, in general, R/E-coherent, because they
recognize ε-free (i.e., without taking ε-transitions), in the same state q, terms lσ and rσ
that are not a priori equal modulo E (cf. Figure 1). However, R/E-coherence (Def. 19)
imposes that terms recognized ε-free in a state be equal modulo E. The new algorithm
solves this problem by ε-free recognizing new terms rσ in new states q′ (cf. Figure 2).

We proceed with the formal definition of the new completion algorithm and with
proving that it preserves the R/E-coherence property and the representatives of states.
The normalization operation generates a set of normalized transitions for the completed
automaton in Figure 2 to enable the derivation rσ →6ε ∗Ai+1

R
q′. Even though q′ is a new state

for AiR, our normalization operation re-uses old states of AiR to recognize the subterms
of rσ whenever possible, in order to reduce the resulting automaton as much as possible.

Definition 32 (Normalization). Let Q be a countably infinite set of states. Let ∆ be
a finite set of transitions whose states are in Q. A new state for ∆ is a state q′ ∈ Q
not occurring in any transition in ∆ 1 . The normalization operation takes a transition
t→ q such that t ∈ T (F ∪Q) \Q, and q is new for ∆, and inductively generates a set of
normalized transitions, by applying the following rules:

(1) Norm∆(t → q) = {t→ q} if t→ q is a normalized transition;
(2) Norm∆(f(t1, . . . , ti, . . . , tn) → q) = Norm∆(f (t1 , . . . , qi , . . . , tn)→ q) if a state

qi ∈ Q can be chosen such that ti → 6ε ∗∆ qi;
(3) Norm∆(f (t1 , . . . , ti , . . . , tn)→ q) = Norm∆′(f(t1, . . . , q

′
i, . . . , tn) ∪∆′

where ∆′ = Norm∆∪{ti→q′
i }(ti → q ′i) and q′i is new for ∆, if for all qi ∈ Q, ti 6→ 6ε ∗∆ qi.

�

The normalization operation terminates since both recursive rules (2) and (3) decrease
the number of symbols in F in their right-hand sides. A simple proof by induction
establishes that for all terms t ∈ (T (F ∪Q) \ Q) and for all states q ∈ Q new for ∆,

t →6ε ∗∆∪Norm∆(t→q) q holds. Moreover, since q is new for ∆, adding Norm∆(t → q) to

∆ does not change the languages recognized by the states occurring in ∆. This will be
useful in the proof of Theorem 36. These points are illustrated by the following example.

1 Since ∆ is finite and Q is a countably infinite, a new state for ∆ can always be found.

12



Example 33. Let ∆ = {b→ q0}. We illustrate the above definition on the normalization

of the transition f(g(a), b, g(a)) → q. The states changed by each step of normalization

are boldfaced. Using the third rule of the definition, Norm∆(f(g(a), b, g(a))→ q) equals

Norm∆∪{g(a)→q1}(f(q1, b, g(a))→ q) ∪ Norm∆∪{g(a)→q1}(g(a)→ q1)

Then, by using the second rule of the definition, and we obtain:

Norm∆∪{g(a)→q1}(f(q1,q0, g(a))→ q) ∪ Norm∆∪{g(a)→q1}(g(a)→ q1)

Using again the second rule of the definition:

Norm∆∪{g(a)→q1}(f(q1, q0,q1)→ q) ∪ Norm∆∪{g(a)→q1}(g(a)→ q1)

Using the first rule of the definition, we can simplify it into:

{f(q1, q0, q1)→ q} ∪ Norm∆∪{g(a)→q1}(g(a)→ q1)

Using the third rule, we get:

{f(q1, q0, q1)→ q} ∪ Norm∆∪{g(a)→q1,a→q2}(g(q2)→ q1)

∪Norm∆∪{g(a)→q1,a→q2}(a→ q2)

Which simplifies using the first rule into:

{f(q1, q0, q1)→ q, g(q2)→ q1} ∪ Norm∆∪{g(a)→q1,a→q2}(a→ q2)

And finally, using the first rule again, we obtain:

{f(q1, q0, q1)→ q, g(q2)→ q1, a→ q2}.

The normalization operation is used in the completion operation. We first define the

completion of an automaton for one critical pair and illustrate it on an example.

Definition 34 (Automaton completion for one critical pair). Consider a tree automaton

A = 〈F ,Q,Qf ,∆〉, a left-linear TRS R, and a critical pair lσ →∗A q, lσ →∗R rσ having

the property rσ 6→∗A q, where l→ r ∈ R, q ∈ Q, and σ ∈ Σ(Q,X ). The completion of A
for the given critical pair is the automaton A′ = 〈F ,Q′,Qf ,∆′〉, where

∆′ =

 ∆ ∪ {q′ → q} if q′ ∈ Q can be chosen such that rσ → 6ε ∗∆ q′

∆ ∪Norm∆(rσ → q ′) ∪ {q′ → q} otherwise, where q′ is a new state for ∆

and Q′ is the union of Q with the set of states occurring in ∆′. �

Note the distinction between the case where rσ is already recognized into a state q′

of A and the more general case. Here is an example illustrating this definition.

Example 35. Let A be a tree automaton with ∆ = {f(q1)→ q0, a→ q1, g(q1)→ q2}.
• If R = {f(x) → x} then there is a critical pair f(x)σ →A∗ q0 and f(x)σ →R xσ

with σ = {x 7→ q1}. Since q1 → 6ε ∗A q1, by the first case of our definition, we obtain

∆′ = ∆ ∪ {q1 → q0};
• If R = {f(a)→ g(a)} then there is a critical pair f(a)σ →A∗ q0 and f(a)σ →R g(a)σ

with σ = ∅. Since g(a) → 6ε ∗A q2, by the first case of our definition, we obtain ∆′ =

∆ ∪ {q2 → q0};
• If R = {f(x) → f(g(x))} then the critical pair is f(x)σ →A∗ q0 and f(x)σ →R
f(g(x))σ with σ = {x 7→ q1}. Since there is no state q ∈ {q0, q1, q2} such that

f(g(x))σ →6ε ∗A q, we have to use the second case of our definition and obtain ∆′ =

∆ ∪ Norm∆(f(g(q1)) → q′) ∪ {q′ → q0}. After simplification of Norm∆ we obtain

∆′ = ∆ ∪ {f(q2)→ q′, q′ → q0}.

13



The completion of an automaton A by a TRS R consists in repeating, for all the
critical pairs between A and R, the one-pair completion operation defined above. For an
automaton A and a TRS R. The completion of A by R is hereafter denoted by CR(A).

The following theorem says that the completion operation preserves R/E-coherence
and the representatives of states. In its proof, we sometimes say that a term t is recognized
ε-free in a state q of an automaton A if t→ 6ε ∗A′ q, and we call the ε-free language of q in
A the set of terms t ∈ T (F) that are recognized ε-free by q in A.

Theorem 36. For all automata A, TRS R, and equation system E, such that A is
R/E-coherent and R is left-linear, CR(A) is R/E-coherent. Moreover, each state q̃ of

A, q̃ is also a state of A′ = CR(A) and for all terms s ∈ T (F), s→ 6ε ∗A′ q̃ implies s→6ε ∗A q̃.

Proof. We sketch the proof for the completion of one critical pair between A and R - a
simple induction does the generalization. Let then our critical pair be defined by lσ →∗A q
and lσ →∗R rσ. Moreover, we focus on the more interesting case, where the right-hand
side rσ of the critical pair is not recognized by any state of A - hence, rσ is not a state,
and rσ 6→ 6ε ∗∆ q̃. The case where rσ is already recognized by a state of A is simpler.

Let then A′ be the completed automaton according to the second case of Definition 34.
The statement each state q̃ of A is also a state of A′ = CR(A) of our theorem is a direct

consequence of Definition 34. The next statement for all terms s ∈ T (F), s →6ε ∗A′ q̃

implies s → 6ε ∗A q̃, follows from the observation that the only state of A, whose language
may change in A′ by completion, is q, due to the ε-transition q′ → q. This is because
Definition 32 ensures that the set of transitions Norm∆(rσ → q′) does not modify the
ε-free language of the states of A. Since any term recognized in q by A′, but not by A,
must “take” the ε-transition q′ → q, the ε-free languages of q in A′ and in A are the
same. Hence, for all states q̃ of A, the ε-free languages of q̃ in A and in A′ are the same.

Another simple observation is that we only need to prove R/E-coherence for the
subset of states q̃ ∈ {q}∪ (Q′ \Q) of A′. Indeed, as noted above, the languages and ε-free
languages of all the other states of A′ (i.e., Q\{q}) are left unchanged by completion, and
the R/E coherence of A′ in those states follows from the R/E coherence of A in the same
states. Hence, we we only need to prove R/E-coherence for the states q̃ ∈ {q}∪ (Q′ \Q).
By definition of completion, q̃ is either q, or a new state introduced by completion.

(A) We show the first requirement of R/E-coherence: there exists s ∈ T (F) such that

s → 6ε ∗A′ q̃. The case q̃ = q is trivial because, as noted above, the terms recognized ε-free
by A′ in q are exactly those recognized ε-free by A in q - and there is at least such a
term by R/E-coherence of A. For the case q̃ 6= q: let us first consider the case q̃ = q′. By

hypothesis, rσ → 6ε ∗A′ q′, and rσ is a term in T (F ∪Q). Let r = Cr[x1, . . . , xn], where Cr

is a context 2 and x1, . . . , xn are all the variables occurring in r. Then, σ maps each of the
variables xi to some state qi ∈ Q, i.e., rσ = Cr[q1, . . . , qn]. If repA(qi) is a representative

for qi (i = 1, . . . , n) in A then repA(qi)→ 6ε ∗A qi, and, since rσ = Cr[q1, . . . , qn]→ 6ε ∗A′ q′, we

obtain Cr[repA(q1), . . . , repA(qn)] → 6ε ∗A′ q′ by definition of derivation in tree automata.
This concludes the case q̃ = q′. If q̃ 6= q′ is another state generated by completion, then
a subterm t̃ of rσ is recognized ε-free in q̃. We prove this case by applying the same
reasoning as for the case q̃ = q′ to the subterm t̃ of rσ, rather than to the term rσ itself.

(B) We prove the second requirement of R/E-coherence: for all t ∈ T (F), if t→6ε ∗A′ q̃,

then s =E t, where s ∈ T (F) is the term satisfying s→ 6ε ∗A′ q̃ as established in (A) above.
We settle the case q̃ = q by noting again that the terms recognized ε-free by A′ in q
are exactly those recognized ε-free by A in q, and all those terms are equal modulo E
by the R/E-coherence of A. We continue with the case q̃ = q′. We write again r =
Cr[x1, . . . , xn] and rσ = Cr[q1, . . . , qn] with q1, . . . , qn ∈ Q. The normalization operation

2 Note that the context Cr[. . .] exists based on use our assumption that r is not a variable.

14



ensures that all terms t′ ∈ T (F) such that t′ →6ε ∗A′ q′ have the form Cr[t′1, . . . , t
′
n], for

terms t′1, . . . , t
′
n ∈ T (F) such that t′i →

6ε ∗
A qi for i = 1, . . . , n. In particular, for the terms

s and t in our hypothesis, s = Cr[s1, . . . , sn] for terms si →6ε ∗A qi for i = 1, . . . , n. and

t = Cr[t1, . . . , tn] for terms ti → 6ε ∗A qi for i = 1, . . . , n. By R/E-coherence of A, ti =E si
for i = 1, . . . , n, and then s =E t follows by congruence. This concludes the case q̃ = q′.
The last case, when q̃ 6= q′ is another state generated by completion, is settled by analogy
with the corresponding case in (A): there exists a subterm t̃ of rσ that is recognized ε-free
in q̃, and we apply exactly the same reasoning as for the case q̃ = q′ to the subterm t̃.

(C) we prove the third requirement of R/E-coherence: for all t ∈ T (F), if t →∗A′ q̃,
then s→∗R/E t. Unlike the proofs for (A) and (B), the case q̃ = q is nontrivial here.

Consider then the set of terms that are recognized in q by A′, i.e., L(A′, q). We
partition this set into L(A, q) and L(A′, q) \ L(A, q). For all terms t ∈ L(A, q), our
conclusion s→∗R/E t holds by R/E-coherence of A. To complete the proof, we only need

to establish s →∗R/E t for all terms t ∈ L(A′, q) \ L(A, q). By construction of A′, the

derivation t→∗A′ q in our hypothesis can be decomposed into t→∗A′ q′ →A′ q, i.e., the last
step takes the ε-transition q′ → q, and the prefix t→∗A′ q′ means that t ∈ L(A′, q′). Let
again r = Cr[x1, . . . , xn] and rσ = Cr[q1, . . . , qn] with q1, . . . , qn ∈ Q. The normalization
operation ensures that the term t ∈ L(A′, q′) has the form t = Cr[t1, . . . , tn], where
ti ∈ L(A, qi) for i = 1 . . . , n. On the other hand, the left-hand side l of the rule l→ r in
our critical pair has the form l = Cl[x1, . . . , xm] with m ≥ n, since Var(l) ⊇ Var(r) 3 , and
then lσ = Cl[q1, . . . qn, qn+1, . . . qm]. Consider then a substitution µ such that µ(qi) = ti,
where the terms ti ∈ L(A, qi) for i = 1, . . . n are those occurring in t = Cr[t1, . . . , tn], and
µ(xj) are arbitrary terms in L(qj) for j = n+ 1, . . . ,m. Then, rσµ = Cr[t1, . . . , tn] = t.
By definition of term recognition, from lσ →∗A q in our critical pair, we get lσµ →∗A q,
which, by R/E-coherence of A, gives s →∗R/E lσµ. And from lσ →R lσ we obtain

lσµ →R rσµ = Cr[t1, . . . , tn] = t. The case q̃ = q is concluded by the transitivity of
the →∗R/E relation. Also, note that the case q̃ = q has actually covered the case q̃ = q′,

because we have decomposed the derivation t →∗A′ q into t →∗A′ q′ →A′ q. Finally, the
case where q̃ 6= q′ is another state generated by completion, is settled by analogy with
the case q̃ = q′, like in the previous parts (A) and (B) of this proof. 2

Theorem 36 implies the following corollary - note the analogy with Corollary 31:

Corollary 37. Let R be a left-linear TRS, E be a set of equations, and A be a R/E-
coherent automaton, Then, for each state q of A, q is also a state of CR(A), and
repCR(A)(q) =E repA(q).

The last technical lemma in this section says that the completion of A by a left-linear
TRS R includes all the terms reachable in one step from the language L(A, q).

Lemma 38. If R is left-linear, then R(L(A, q)) ⊆ L(CR(A), q).

Proof. (sketch) By induction on the number of rules in R. The inductive step of this
first induction requires a second induction, on the number of critical pairs between A
and R. The core of the proof lies within the inductive step of the second induction. It
amounts to proving our lemma for the TRS R consisting of exactly one rule, and for
exactly one critical pair between A and R - the induction hypotheses deal with the rest.

Let then R = {l→ r} and our critical pair be defined by lσ →A∗ q and lσ →R rσ. On

the one hand, l = Cl[x1, . . . , xn] where Cl is a context in which the variables x1, . . . xn
occur exactly once, and lσ has the form Cl[q1, . . . , qn], where qi = xiσ for i = 1, . . . , n.

3 This context exists because of the general assumption that for rewrite rules l → r, l is is not a variable.

15



Hence, L(A, q) = {lσµ | µ ∈ Σ(T (F),Q), qiµ ∈ L(A, qi) for i = 1, . . . , n}. On the
other hand, by definition, R(L(A, q)) is obtained by applying the rule l → r to L(A, q),
and, since R is left-linear, this amounts to applying the instance lσ → rσ of our rule,
i.e., R(L(A, q)) = {rσµ | µ ∈ Σ(T (F),Q), qiµ ∈ L(A, qi) for i = 1, . . . , n}. But, by
construction, the completed automaton CR(A) recognizes the terms rσ in q, and then the
terms rσµ in R(L(A, q)) are also recognized by CR(A) in q, which proves the result. 2

6. Combining Completion and Simplification

We now define the full completion algorithm, which combines simplification steps
defined in Section 3 with completion steps defined in Section 5. Then, using the re-
sults established for simplification and for completion, together with a few more simple
lemmas, we prove that the full completion algorithm, when it terminates on an input
automaton A, produces a tree automaton A∗R,E that recognizes an over-approximation
of R∗(L(A)) and an under-approximation of R∗E(L(A)).

Definition 39 (Completion with Simplification). Let A be a tree automaton, R a TRS
and E a set of equations. We define the sequence of automata (AnR,E)n≥0 as follows

• A0
R,E = A,

• for all n ∈ N, An+1
R,E = A′ where CR(AnR,E) ;!

E A′ and A′ = CR(AnR,E)αn+1.

If there exists k ∈ N such that CR(AkR,E) = AkR,E = A′ then we define A∗R,E = AkR,E . �

Note that the definition of A∗R,E does not depend on the value of k, since if Ak+1
R,E =

AkR,E then AnR,E = AkR,E for all n ≥ k, i.e., completion and simplification do not change
the automaton any more. In practice, if our algorithm terminates, then it does so at the
smallest k ∈ N with the above property - we say that our algorithm converges in k steps.
Note also that A∗R,E does not exist in general, but it can be computed in many interesting
cases, provided that the set of equations E ensures termination of the completion. A
simple example follows. More substantial examples will be given in Section 7.

Example 40. Let R = {f(x, y) → f(s(x), s(y))}, E = {s(s(x)) = s(x)} and A0 be
the tree automaton with set of transitions ∆ = {f(qa, qb) → q0), a → qa, b → qb}, i.e.
L(A0) = {f(a, b)}. The completion ends after two steps. Completion steps are summed
up in the following table. To simplify the presentation, we do not repeat the common
transitions, i.e. AiR,E is supposed to contain all transitions of A0, . . . ,Ai−1

R,E .

A0 A1
R,E CR(A1

R,E) A2
R,E

f(qa, qb)→ q0 f(q1, q2)→ q3 f(q4, q5)→ q6 f(q1, q2)→ q6

a→ qa s(qa)→ q1 s(q1)→ q4 s(q1)→ q1

b→ qb s(qb)→ q2 s(q2)→ q5 s(q2)→ q2

q3 → q0 q6 → q3

L(A0) = {f(a, b)} L(A1
R,E) = {f(a, b), L(CR(A1

R,E)) = {f(a, b), L(A2
R,E) =

f(s(a), s(b))} f(s(a), s(b)), {f(s∗(a), s∗(b))}

f(s(s(a)), s(s(b))}

The automaton A1
R,E is exactly CR(A0) since equations do not apply. Then CR(A1

R,E)

contains all the transitions of A1
R,E plus those obtained by the resolution of the critical

pair f(q1, q2) →A∗ q3 and f(q1, q2) →R f(s(q1), s(q2)). Solving this critical pair accord-

ing to Definition 34 adds the transitions shown in above table. However, on this last
automaton, simplification can be applied as follows:

16



s(s(qa))
E

A,6ε ∗

��

s(qa)

∗ A,6ε

��
q4 q1

s(s(qb)) E

A,6ε ∗

��

s(qb)

∗ A,6ε

��
q5 q2

Hence, A2
R,E is obtained from CR(A1

R,E) by renaming q4 by q1 and q5 by q2, i.e.

A2
R,E = CR(A1

R,E){q4 7→ q1, q5 7→ q2}.

6.1. Proving the Lower Bound: R∗(L(A)) ⊆ L(A∗R,E)

We need a few lemmas. The first one says that the languages of the successive automata
produced by the algorithm in Definition 39 form a monotonously increasing sequence.
The renamings occurring in the algorithm, and their composition, are taken into account.
Hereafter, we denote by Πn

i=1αi = α1 ◦· · ·◦αn the composition of the renaming functions
occurring in Definition 39. By convention, for n = 0, Πn

i=1αi is the identity function.

Lemma 41. For all n ∈ N, let βn = Πn
i=1αi. Then, L(AnR,E , qβn) ⊆ L(An+1

R,E , qβn+1).

Proof. We have L(AnR,E , qβn) ⊆ L(CR(AnR,E), qβn) because completion is an over-
approximation, and L(CR(AnR,E), qβn) ⊆ L(CR(AnR,E)αn+1, qβnαn+1) by Lemma 16.

Since by definition An+1
R,E = CR(AnR,E)αn+1 and βn+1 = βnαn+1 we obtain the result. 2

Therefore, all the languages of the automata produced by our algorithm include L(A, q):

Lemma 42. For all n ∈ N, L(A, q) ⊆ L(AnR,E , qβn) where βn = Πn
i=1αi.

Proof. By induction on n. The base case uses the convention that Π0
i=1αi is the identity.

For the inductive step, L(A, q) ⊆ L(AnR,E , qβn) ⊆ L(An+1
R,E , qβn+1) by Lemma 41. 2

Next, the languages of automata closed under completion are closed under rewriting.

Lemma 43. If R is left-linear and A = CR(A) then L(A, q) = R∗(L(A, q)).

Proof. The ⊆ inclusion is trivial. For the ⊇ inclusion, we replace L(CR(A), q) by L(A, q)
in Lemma 38 since they are equal by our hypothesis, and obtain R(L(A, q)) ⊆ L(A, q).
Hence,Rn(L(A, q)) ⊆ L(A, q) for all n ∈ N. The conclusion follows by taking n→∞. 2

The next lemma is “almost” the lower-bound result. The renamings of the states
occurring in the algorithm, and the composition of renamings, are taken into account.

Lemma 44. Let R be a left-linear TRS, A be a tree automaton and E be a set of
equations. If the algorithm in Definition 39 converges for A and R in n steps, then,
R∗(L(A), q) ⊆ L(A∗R,E , qβn) where βn = Πn

i=1αi.

Proof. Since our algorithm converges in n steps, A∗R,E = AnR,E . Then, using Lemma 42,
L(A, q) ⊆ L(A∗R,E , qβn) and then (†) R∗(L(A, q)) ⊆ R∗(L(A∗R,E , qβn)). The condition
of termination of our algorithm in Definition 39 implies A∗R,E = CR(A∗R,E). Then, by
Lemma 43, L(A∗R,E , qβn) = R∗(L(A∗R,E , qβn)), and the conclusion follows from (†). 2

The lower-bound result is obtained from Lemma 44 and a few identities. Recall that
in Definition 10, by renaming using a function α an automaton A whose set of accepting
states is Qf , the set of accepting states of Aα is Qfα = {qfα | qf ∈ Qf}.

17



Theorem 45. Let R be a left-linear TRS, A be a tree automaton and E be a set of
equations such that algorithm in Definition 39 converges. Then R∗(L(A)) ⊆ L(A∗R,E).

Proof. Assume that the algorithm converges in n steps. We have the relationsR∗(L(A)) =
R∗(

⋃
qf∈Qf

L(A, qf )) ⊆ R∗(
⋃
qf∈Qf

L(A∗R,E , qfβn)) by Lemma 44, and the last expres-

sion equals
⋃
qf∈Qf

R∗(L(A∗R,E , qfβn)) =
⋃
q′
f
∈Qfβn

R∗(L(A∗R,E , q′f )) = L(A∗R,E). 2

6.2. Proving the Upper Bound: L(A∗R,E) ⊆ R∗E(L(A))

For proving our upper-bound (or precision) result we also need a few lemmas. The first
one says that the automata produced by our algorithm are R/E-coherent - provided, of
course, that the algorithm is given an R/E-coherent automaton as input.

Lemma 46. Let R be a left-linear TRS, E a set of equations and A a R/E-coherent
tree automaton. For all n ∈ N, AnR,E is R/E-coherent.

Proof. AnR,E is obtained from the R/E-coherent automaton A by iterating completion
and simplification steps, which both preserveR/E-coherence by Theorems 36 and 30. 2

The second lemma shows that our algorithm “preserves” the representatives of states.
The renamings occurring in the algorithm, and their composition, are taken into account.

Lemma 47. Let R be a left-linear TRS, E a set of equations and A a R/E-coherent
tree automaton. For all n ∈ N, repAn

R,E
(qβn) =E repA(q).

Proof. By induction on n. The base case is trivial. For the inductive step, we know
that An+1

R,E = CR(AnR,E)αn+1. Then, repAn+1
R,E

(qβn+1) = repCR(An
R,E

)αn+1
((qβn)αn+1) =E

repCR(An
R,E

)(qβn) by Corollary 31. Now, qβn is a state of AnR,E , and by Corollary 37,

repCR(An
R,E

)(qβn) =E repAn
R,E

(qβn), and the result follows by induction hypothesis. 2

The next lemma is “almost” the upper-bound result. The renamings of the states
occurring in the algorithm, and the compositions of renamings, are taken into account.

Lemma 48. Let R be a left-linear TRS, E a set of equations and A a R/E-coherent
tree automaton. For all n ∈ N, L(AnR,E , qβn) ⊆ R∗E(L(A, q)).

Proof. AnR,E isR/E-coherent by Lemma 46. Using Lemma 21 we obtain L(AnR,E , qβn) ⊆
R∗E(repAn

R,E
(qβn)), and repAn

R,E
(qβn) =E repA(q) by Lemma 47. Hence, L(AnR,E , qβn) ⊆

R∗E(repA)(q), and L(AnR,E , qβn) ⊆ R∗E(L(A, q)) follows since repA(q) ∈ L(A, q). 2

The upper-bound result is obtained from Lemma 48 and a few trivial identities:

Theorem 49. Let R be a left-linear TRS, A be a tree automaton and E be a set of
equations such that algorithm in Definition 39 converges. Then, L(A∗R,E) ⊆ R∗E(L(A)).

Proof. Assume that the algorithm converges in n steps. We have the relations L(A∗R,E) =⋃
q′
f
∈Qfβn

L(A∗R,E , q′f ) =
⋃
qf∈Qf

L(A∗R,E , qfβn) ⊆
⋃
qf∈Qf

R∗E(L(A, qf )) by Lemma 48,

and then
⋃
qf∈Qf

R∗E(L(A, qf )) = R∗E(
⋃
qf∈Qf

L(A, qf )) = R∗E(L(A)). 2

18



The last result in this section shows that, for linear equations having the same set
of variables in their left and right-hand sides, a certain instance of our completion al-
gorithm produces (if it terminates) an automaton that recognizes exactly the set of
R/E-reachable terms. This may be interesting when E are the usual equations for asso-
ciativity, commutativity, and identity: the corollary shows that we can perform rewriting
modulo associativity, commutativity, and identity, or modulo a subset of these properties.

Corollary 50. Let R be a left-linear TRS, E be a set of linear equations such that
Var(l) = Var(r) for all l = r ∈ E, and A be a R/E-coherent tree automaton. Let
←→
E = {l→ r, r → l | l = r ∈ E}. If our completion algorithm with equations E and TRS

R∪
←→
E terminates, then the automaton A∗

R∪
←→
E ,E

satisfies L(A∗
R∪
←→
E ,E

) = R∗E(L(A)).

Proof. Since E is linear and Var(l) = Var(r) for all l = r ∈ E, R ∪
←→
E is a left-

linear TRS. Using Theorem 45 we obtain L(A∗
R∪
←→
E ,E

) ⊇ (R ∪
←→
E )∗(L(A)). We clearly

have (R ∪
←→
E )∗(L(A)) = R∗E(L(A), and then L(A∗

R∪
←→
E ,E

) ⊇ R∗E(L(A)). To obtain the

opposite inclusion, we use Theorem 49 and obtain L(A∗
R∪
←→
E ,E

) ⊆ (R∪
←→
E )∗E(L(A)). The

conclusion follows from (R∪
←→
E )∗E(L(A)) = (R∪

←→
E )∗(L(A)) = R∗E(L(A)). 2

7. Experiments

In this section we show some verification examples that have been be carried out
with an implementation of our main algorithm, presented in the previous section. We
focus on verifying safety properties and thus essentially rely on Theorem 45. We have
developed a new version of the Timbuk tool to support our new algorithm: Timbuk 3.0.
The experiments of this section have been performed using this prototype. Here, our aim
is not to compare execution times of our tool with recent implementations of completion
procedures (Balland et al., 2008; Gallagher and Rosendahl, 2008). We just note that, for
the examples in this section, our algorithm terminates in less than one second.

The convention followed hereafter is that the variable’s names start with capital letters.

7.1. An introductory example

We borrow from (Clavel et al., 2007) the example of a readers-writers system. System
states are represented by terms of the form state(R,W) where R indicates the number
of readers and W indicates the number of writers accessing a file. Readers and writers
can leave the file at any time, writers can gain access to the file if nobody else is using
it, and readers can gain access to the file only if there are no writers. The initial state
is state(o,o).The two properties to prove are mutual exclusion between readers and
writers and mutual exclusion between writers. This is defined by the following Timbuk
specification.

Ops state:2 o:0 s:1 % arities of function symbols

Vars R W

TRS R1

state(o,o) -> state(o,s(o)) % Writer can start if alone

state(R,o) -> state(s(R),o) % Reader can start if no writer

state(R,s(W)) -> state(R,W) % Readers and writers can stop at any time

state(s(R),W) -> state(R,W) %

Set A1

state(o,o)

Patterns

state(s(_),s(_)) % at least one writer and one reader

19



state(_,s(s(_))) % at least two writers

Equations Abs

Rules

s(s(_))=s(s(o))

In Timbuk 3.0 specifications, the TRS section is followed by either an Automaton or a
Set section defining the initial set of terms, a Patterns section defining the patterns of
forbidden terms and an Equations section defining the approximation equations. Pat-
terns are terms with variables (possibly anonymous, the ’ ’ symbol used here) that are
matched on the completed tree automaton. If a match is found then the term matched
by the pattern may be reachable. Searching for a pattern t is similar to searching for a
critical pair, i.e. finding a substitution σ ∈ Σ(Q,X ) and a state q such that tσ →A∗ q.
This is efficiently implemented using tree automata intersections (Feuillade et al., 2004).

Finally, the Equations here consists of the single equation s(s( ))=s(s(o)), which
identifies all natural numbers x ≥ 2 with 2. On this example, Timbuk immediately finds
a fixpoint tree automaton where no occurrence of the forbidden patterns is found. This
means that both mutual-exclusion properties hold.

Timbuk also allows for contextual equations, which are of three different forms:
(1) [s]⇒ [s1 = t1 . . . sn = tn]
(2) [s, t]⇒ [s1 = t1 . . . sn = tn]
(3) [s = t]⇒ [s1 = t1 . . . sn = tn]

For a tree automaton A, applying contextual equations on A is done as follows. The
right-hand side of⇒ is a list of equations to be applied on A provided that the left-hand
side can be matched on A. A left-hand side of the form [s] means that we look only for
a matching for s on A ; if the left-hand side is [s, t] then we look for matches for both s
and t independently, and if the left-hand side is [s = t] we look for solutions such that
matches for s and t belong to the same equivalence class, i.e. are recognized by the same
state of A. In our specification, we can replace the equation s(s( ))=s(s(o)) by the
following contextual equation:
[state(s(s(R)), o)] => [s(s(R))=s(s(o))]

meaning that every natural number x ≥ 2 is identified with 2 provided that it appears
on the reader position. This leads to a more precise approximation, comparable to the
one used in (Clavel et al., 2007). The bakery algorithm, also verified in (Meseguer et al.,
2003), can also be handled using approximation equations. For proving the basic safety
property, saying that the two processes cannot access the critical section at the same
time, we only use a single equation. In our setting we do not need any additional proof of
ground confluence, termination, and coherence, to prove safety properties of the system.
On the other hand, the approach of Meseguer et al. deals with more general linear-
temporal logic properties, which are not currently handled by our approach.

7.2. Comparing with normalization rules

In this section, we consider a distributed infinite-state system borrowed from (Genet
and Viet Triem Tong, 2001a) and prove that it is deadlock free. We show that equa-
tional approximations are more concise than the normalization rules of (Genet and Viet
Triem Tong, 2001a).

This example consists of two processes that count ’+’and ’−’ symbols in a list. One
process, let us call it P+, counts the ’+’ symbols and the other one, P−, counts the ’−’
symbols. Initially, the list is divided into two parts, and each part is given to one process.
Each process also has an incoming message queue. The process P+ counts the ’+’ symbols
in its list, sends a message to the queue of P− each time it finds a ’−’ symbol, and reads
messages in its message queue to take into account the ’+’ symbols sent by process P−.
The behavior of process P− is symmetrical to that of P+.

20



This system can be described by the following TRS, where a term of the form state(p1,

p2, s1, s2) represents a state of the system where process P+ is in a configuration de-
scribed by the term p1, P− is in a configuration described by the term p2, and the
message queues for processes P+ and P− are respectively s1 and s2. A term of the form
proc(l, c) is a process configuration where the current list of symbols is l and the local
counter is c. Queues are represented by lists, in which the add symbol adds a message at
the end of the list. In (Genet and Viet Triem Tong, 2001a), it is shown how completion
can be used to find the right algorithm for processes to stop without deadlock. Here,
we directly start from the TRS encoding the correct solution: each process adds an end

symbol to the queue of the other process when it no longer has symbols to count. A
process stops when it has no symbols to count and has read the end symbol sent by the
other process.

TRS R1

add(X, nil) -> cons(X, nil)

add(X, cons(Y, Z)) -> cons(Y, add(X, Z))

state(proc(cons(plus, Y), C), Z, M, N) -> state(proc(Y, s(C)), Z, M, N)

state(proc(cons(minus, Y), C), U, M, N) -> state(proc(Y, C), U, M, add(minus, N))

state(X, proc(cons(minus, Y), C), M, N) -> state(X, proc(Y, s(C)), M, N)

state(X, proc(cons(plus, Y), C), M, N) -> state(X, proc(Y, C), add(plus, M), N)

state(proc(X, C), Z, cons(plus,M), N) -> state(proc(X, s(C)), Z, M, N)

state(X, proc(Z, C), M, cons(minus,N)) -> state(X, proc(Z, s(C)), M ,N)

state(proc(nil, C), Z, M, N) -> state(proc(nil, C), Z, M, add(end,N))

state(X, proc(nil, C), M, N) -> state(X, proc(nil, C), add(end,M), N)

state(proc(nil, C), Z, cons(end,M), N) -> state(stop(C), Z, M, N)

state(X, proc(nil, C), M, cons(end, N)) -> state(X, stop(C), M, N)

The initial configuration of the system is described by the following tree automaton,
recognizing every configuration where the two processes have a counter equal to zero, a
nonempty list of symbols to count from, and an empty message queue.
Automaton A1

States q0 qinit qzero qnil qlist qsymb

Final States q0

Transitions

o -> qzero nil -> qnil plus -> qsymb minus -> qsymb

cons(qsymb, qnil) ->qlist

cons(qsymb, qlist) -> qlist

proc(qlist, qzero) -> qinit

state(qinit, qinit, qnil, qnil) -> q0

A forbidden configuration is any state where a process has terminated but still has
symbols to count in its queue. This is given to the Timbuk tool as the following patterns:
state(stop(_),_,cons(plus,_),_)

state(_,stop(_),_,cons(minus,_))

Any term matching one of these patterns is a deadlock situation. To prove the absence
of deadlock, (Genet and Viet Triem Tong, 2001a) requires 20 normalization rules closely
related to the initial automaton’s structure. On the same example, we can do better with
equations. To define the approximation it is enough to note that what makes the system
infinite-state are the two unbounded lists of ’+’ and ’-’ read by the two processes. Each
process eithers increases its counter, or adds a symbol with the ’add’ operation to the
queue of the other process. Thus, terms of the form s(s(. . .)) and add(add(. . .)) grow
without bound. Hence, a natural choice for approximation equations could be:
s(X)=X

add(X,Y)=Y

Using those equations, completion terminates but the approximation is too coarse: it con-
tains terms matching the forbidden patterns. The reason is that the equation add(X,Y)=Y

identifies, e.g., the terms s = add(end, add(plus, nil)) and t = add(plus, nil). In other
words, it is possible to replace any queue t where the ’end’ symbol does not appear by a

21



queue s where it appears. This corresponds to the fact that the other process has signaled
its termination although it has not terminated, which is a deadlock situation. To avoid
this problem, we identify “add chains” only if their first parameter is the same symbol:
s(X)=X

add(plus,add(plus,Z))=add(plus,Z)

add(minus,add(minus,Z))=add(minus,Z)

add(end, add(end, Z))=add(end, Z)

Using this small set of equations, completion terminates and proves the property. The
completed automaton contains 14 states and 123 transitions.

7.3. Defining static analyzes from the literature using equations

In the next sections, we are concerned with the flow analysis of functional programs.
First, we consider an example borrowed from (Jones and Andersen, 2007). Their analysis
produces a tree grammar encoding a flow analysis of the program. In (Jones and Ander-
sen, 2007) the contributions are the taking into account of of higher-order functions and
of lazy evaluation. We here focus on the lazy evaluation part because the grammar for
the example they propose, is fully detailed in their paper, and comparisons can be made.
The functional program is directly given in its TRS form:

g(N) -> first(N, sequence(nil))

first(nil, Xs) -> nil

first(cons(one,M), cons(X,Xs)) -> cons(X,first(M,Xs))

sequence(Y) -> cons(Y,sequence(cons(one,Y)))

For any list N composed of n instances of the symbol one, the function g builds a list
of the n first elements from the infinite list [nil, [one], [one, one], . . .]. This program needs
a lazy or outermost evaluation strategy to terminate, because of the sequence function
that does not terminate. The initial set of terms is defined by the following automaton:
Automaton A0

States q0 ql qa q1 qnil

Final States q0

Transitions

g(ql) -> q0

cons(qa,ql) -> ql

cons(q1,ql) -> ql

cons(q1,qnil) -> ql

cons(qa,qnil) -> ql

nil -> qnil

atom -> qa

one -> q1

that recognizes all terms of the form g(l) where l is any list of atoms that can be
one or another atom, as in (Jones and Andersen, 2007). The set of atoms is potentially
infinite and grammars or automata can only be finite, hence, is necessary to finitely
approximate this set. This is achieved using two constants: one, and atom for the atoms
distinct from one.

In (Jones and Andersen, 2007) the objective is to infer the term structure of possible
values for parameters and results of every function f without a priori knowledge on
the inputs of the function. Since completion covers all reachable terms, it covers also
those that can be reached by a lazy evaluation. In fact, we can achieve exactly the same
flow analysis and obtain the same result as (Jones and Andersen, 2007) using contex-
tual equations. The intuition behind the approximation used by (Jones and Andersen,
2007) is simply to identify all possible call values for f . Hence, for the function first

which has two parameters, such an approximation can be defined using the single contex-
tual equation [first(X,Y), first(Z,U)] => [X=Z Y=U]. Similarly, for the function
sequence the equation will be: [sequence(X), sequence(Y)] => [X=Y]. Using those

22



equations, we obtain a completed automaton having 11 states and 18 transitions. Among

the transitions, the following subset recognizes the set of results of calls to the function g:
nil -> q13

cons(q10,q13) -> q13

nil -> q10

cons(q3,q10) -> q10

one -> q3

i.e., any list whose elements are lists of composed of the symbol one.

7.4. Adapting the approximation to the property to prove

In order to illustrate the impact of equations on the precision of the approximation
we prove a certain property of the reverse function. This function is defined by:

append(nil,X) -> X

append(cons(X,Y), Z) -> cons(X, append(Y,Z))

rev(nil) -> nil

rev(cons(X,Y)) -> append(rev(Y), cons(X,nil))

Assume that we want to know what can be the result of rev(l) when l is an arbitrary

list composed of symbols a, b, c and d (in that order) and such that l contains at least one

occurrence of each symbol. The language rev(l) is recognized by the following automaton:
Automaton A0

States q0 qla qlb qlc qld qnil qf qa qb qc qd

Final States q0

Transitions

rev(qla) -> q0

cons(qa, qla) -> qla

cons(qa, qlb) -> qla

cons(qb, qlb) -> qlb

cons(qb, qlc) -> qlb

cons(qc, qlc) -> qlc

cons(qc, qld) -> qlc

cons(qd, qld) -> qld

cons(qd, qnil) -> qld

nil -> qnil

a -> qa

b -> qb

c -> qc

d -> qd

The expected result is, of course, the language of lists whose symbols are in the opposite

order and occur at least once. If we use the following equations:
[append(X,Y), append(Z, U)] => [X=Z Y=U]

[rev(X), rev(Y)] => [X=Y]

then, Timbuk produces a tree automaton where state q29 recognizes the result of rev(l):
nil -> q29

cons(q7,q29) -> q29

cons(q8,q29) -> q29

cons(q9,q29) -> q29

cons(q10,q29) -> q29

d -> q10

c -> q9

b -> q8

a -> q7

Specifically, these transitions recognize into q29 the language of lists possibly contain-

ing symbols a, b, c and d in any order. We can improve the approximation by taking the

calling context of the append function into account. The same idea is used to transform

a 0-CFA analysis into a 1-CFA analysis: take the direct calling context into account:

23



[cons(append(X,Y),_), cons(append(Z,U),_)] => [X=Z Y=U]

[cons(_,append(X,Y)), cons(_,append(Z,U))] => [X=Z Y=U]

[append(append(X,Y),_), append(append(Z,U),_)] => [X=Z Y=U]

[append(_,append(X,Y)), append(_,append(Z,U))] => [X=Z Y=U]

where we merge call values of append only if the calling context at depth 1 is the same.
Even though the resulting approximation is more precise, the resulting automaton still
does not preserve the order of symbols in the list. Actually, even by distinguishing calling
context up to a bounded depth k ∈ N (like in a k-CFA analysis), the approximation
would not be precise enough to obtain the result we expect. However, we can construct
a different approximation using the single equation:

append(append(X,Y),Z)=append(X,Z)

Using this equation, we obtain an approximation preserving the order of symbols:
the resulting language contains any list of d, c, b and a in that order. However, the
approximation is still too coarse since there is no guarantee on the occurrence of ev-
ery symbol in the list. This is due to the fact that, using the previous equation, we
have in particular the following equality: append(append(cons(b, nil), cons(a, nil)), nil) =
append(cons(b, nil), nil) meaning that every occurrence of the first term is equivalent to
the second one. That is, our equation preserves the order, but not the occurrences of
symbols in the list. Finally, it is possible to use the following equations:

cons(a, cons(a, X))=cons(a,X)

cons(b, cons(b, X))=cons(b,X)

cons(c, cons(c, X))=cons(c,X)

cons(d, cons(d, X))=cons(d,X)

expressing more precisely where contractions of unbounded lists have to be performed.
With these equations, the completed tree automaton recognizes the expected language.
The automaton has 19 states and 59 transitions.

8. Conclusion

In this paper we propose a new tree automata completion algorithm and a new ap-
proximation mechanism based on equations. The main contribution with respect to the
closest related works (Meseguer et al., 2003; Takai, 2004) is that no restriction is imposed
on the equations. This makes it easy to adapt the set of equations to the particular objec-
tives of an analysis. On the other hand, our term-rewriting systems have to be left linear.
However, this restriction did not prevent us from handling practically interesting case
studies. For Java bytecode verification, the TRS encoding the semantics of the program
is left-linear (Boichut et al., 2007). For cryptographic protocols, non left-linear rules can
be encoded using conditional rules, and a simple extension of completion for conditional
rules based on (Feuillade et al., 2004) is possible.

We have also obtained some results on the precision of our equation-based approxima-
tions. For a given left-linear TRS R, a R/E-coherent initial tree automaton and a set of
equations E, we have shown that our algorithm produces an automaton that recognizes
at most R/E-reachable terms. In other words, the computed approximation is within
the bounds of the expected approximation defined by the equations E.

The first application of tree automata completion was to prove security properties
on cryptographic protocols. Although not presented in this paper, we have verified that
approximations similar to those of (Genet and Viet Triem Tong, 2001a) can be obtained
using equations. On cryptographic protocols, we came up with sets of equations far
simpler than original sets of normalization rules. Experiments are also currently under
way on Java bytecode in order to define 0-CFA and 1-CFA analyses, as in (Boichut et al.,
2007), using equations.

The price to pay for the conciseness and expresiveness of equational approximation is
in the complexity of the algorithms. Finding instances of equation members, and merg-
ing corresponding states is more complex that applying a normalization rule. However,

24



fine-tuned data structures in our prototype made it possible to have a better overall effi-
ciency than the Timbuk 2.2 implementation based on normalization rules. Note also that
soundess of approximations is not jeopardized by implementation optimizations, since
we use the certified Tree Automata Completion Checker of (Boyer et al., 2008) to check
the correctness of the results.

Finally, proving safety properties is interesting but not enough. Proving temporal prop-
erties on the rewriting graph, like (Meseguer et al., 2003), is also of great interest. In the
completion algorithm proposed in this paper, the graph of epsilon transition represents
an abstraction of the rewriting graph. In (Boyer and Genet, 2009), from the completed
automaton, we build a Kripke structure on which LTL properties can be proved. The
proposed construction is limited to finite rewriting graphs. Further research consists of
building finite over-approximations of infinite rewriting graphs using equations.

Acknowledgments

The authors would like to thank Pierre Réty and the anonymous referees for their
comments on this paper.

References

Abdulla, P. A., Legay, A., d’Orso, J., Rezine, A., 2006. Tree regular model checking: A
simulation-based approach. J. Log. Algebr. Program. 69 (1-2), 93–121.

Baader, F., Nipkow, T., 1998. Term Rewriting and All That. Cambridge University Press.
Balland, E., Boichut, Y., Genet, T., Moreau, P.-E., 2008. Towards an Efficient Implemen-

tation of Tree Automata Completion. In: AMAST’08. Vol. 5140 of LNCS. Springer.
Boichut, Y., Genet, T., Jensen, T., Leroux, L., 2007. Rewriting Approximations for Fast

Prototyping of Static Analyzers. In: RTA. Vol. 4533 of LNCS. Springer, pp. 48–62.
Boichut, Y., Héam, P.-C., Kouchnarenko, O., 2004. Automatic Approximation for the

Verification of Cryptographic Protocols. In: Proc. AVIS’2004, joint to ETAPS’04,
Barcelona (Spain).

Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T., 2006a. Abstract Regular Tree
Model Checking. In: Infinity’05. Vol. 149(1) of ENTCS. pp. 37–48.

Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T., 2006b. Abstract Regular Tree
Model Checking of Complex Dynamic Data Structures. In: SAS’06. Vol. 4134 of LNCS.
Springer, pp. 52–70.

Bouajjani, A., Touili, T., 2002. Extrapolating tree transformations. In: CAV. Vol. 2404
of LNCS. Springer.

Bouajjani, A., Touili, T., 2005. On computing reachability sets of process rewrite systems.
In: RTA. Vol. 3467 of LNCS. Springer, pp. 484–499.

Boyer, B., Genet, T., 2009. Verifying Temporal Regular properties of Abstractions of
Term Rewriting Systems. In: Proc. of RULE’09.

Boyer, B., Genet, T., Jensen, T., 2008. Certifying a Tree Automata Completion Checker.
In: IJCAR’08. Vol. 5195 of LNCS. Springer.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott., C. L.,
2007. All About Maude, A High-Performance Logical Framework. Vol. 4350 of Lecture
Notes in Computer Science. Springer.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M., 2008. Tree automata techniques and applications,
http://tata.gforge.inria.fr.

Dershowitz, N., Jouannaud, J.-P., 1990. Handbook of Theoretical Computer Science.
Vol. B. Elsevier Science Publishers B. V. (North-Holland), Ch. 6: Rewrite Systems,
pp. 244–320, also as: Research report 478, LRI.

25



d’Orso, J., Touili, T., 2006. Regular hedge model checking. In: IFIP TCS. Springer, pp.
213–230.

Feuillade, G., Genet, T., Viet Triem Tong, V., 2004. Reachability Analysis over Term
Rewriting Systems. Journal of Automated Reasonning 33 (3-4), 341–383.
URL http://www.irisa.fr/celtique/genet/publications.html

Gallagher, J., Rosendahl, M., 2008. Approximating term rewriting systems: a horn clause
specification and its implementation. In: LPAR’08. Vol. 5330. Springer.

Genest, B., Muscholl, A., Serre, O., Zeitoun, M., 2008. Tree pattern rewriting systems.
In: ATVA’08. Vol. 5311 of LNCS. Springer, pp. 332–346.

Genet, T., 1998. Decidable approximations of sets of descendants and sets of normal
forms. In: Proc. 9th RTA Conf., Tsukuba (Japan). Vol. 1379 of LNCS. Springer-Verlag,
pp. 151–165.

Genet, T., Klay, F., 2000. Rewriting for Cryptographic Protocol Verification. In: Proc.
17th CADE Conf., Pittsburgh (Pen., USA). Vol. 1831 of LNAI. Springer-Verlag.

Genet, T., Rusu, R., 2009. Equational approximations for tree automata completion.
Tech. rep., INRIA, http://hal.archives-ouvertes.fr/hal-00370166/fr/.

Genet, T., Tang-Talpin, Y.-M., Viet Triem Tong, V., 2003. Verification of Copy Protec-
tion Cryptographic Protocol using Approximations of Term Rewriting Systems. In:
WITS’2003.

Genet, T., Viet Triem Tong, V., 2001a. Reachability Analysis of Term Rewriting Systems
with timbuk. In: Proc. 8th LPAR Conf., Havana (Cuba). Vol. 2250 of LNAI. Springer-
Verlag, pp. 691–702.
URL ftp://ftp.irisa.fr/local/lande/tg-vvtt-lpar01.ps.gz

Genet, T., Viet Triem Tong, V., 2001b. Timbuk – a Tree Automata Library. IRISA /
Université de Rennes 1, http://www.irisa.fr/celtique/genet/timbuk/.

Gilleron, R., Tison, S., 1995. Regular tree languages and rewrite systems. Fundamenta
Informaticae 24, 157–175.

Jacquemard, F., Rusinowitch, M., 2008. Closure of hedge-automata languages by hedge
rewriting. In: RTA’08. Vol. 5117 of LNCS. Springer, pp. 157–171.

Jones, N. D., Andersen, N., 2007. Flow analysis of lazy higher-order functional programs.
TCS 375 (1-3), 120–136.

Meseguer, J., Palomino, M., Mart-Oliet, N., 2003. Equational Abstractions. In: Proc.
19th CADE Conf., Miami Beach (Fl., USA). Vol. 2741 of LNCS. Springer, pp. 2–16.

Reynolds, J., 1969. Automatic computation of data set definitions. Information Process-
ing 68, 456–461.

Takai, T., 2004. A Verification Technique Using Term Rewriting Systems and Abstract
Interpretation. In: Proc. 15th RTA Conf., Aachen (Germany). Vol. 3091 of LNCS.
Springer, pp. 119–133.

26


