Non Size Increasing programs and Compilers
Implementation of Implicit Complexity

Thomas Rubiano

PhD supervised by V. Mogbil & J.-Y. Moyen,
in collaboration with V. Danjean,
funded by the Elica Project

Motivations 1/2

@ ICC helps to predict and control resources
@ A lot of theories :
e Size-change and termination (C.S. Lee, N.D. Jones and
A.M. Ben-Amram)
e Quasi-interpretation and verification of resources
(J.Y. Marion, R. Amadio, G. Bonfante, J.Y. Moyen,
R. Péchoux)

e Polynomes MWP (L. Kristiansen and N.D. Jones)
o ...

Motivations 2/2

@ After 20 years of ICC’s theories, maybe it’s time to go in
compilers ?

@ But it's complicated

@ NSI Programs analysis seems to be a good start

NS Programs Introduction

Analogy with Space-RCG

Introduction 1/3

@ We want to detect and to certify that a program computes (or
can compute) within a constant amount of space

@ The study of Non Size Increasing was introduced by M. Hofmann
First idea (safe recursion from S. Bellantoni and S. Cook) :
restrict iterations of functions

@ An example is to allow only iterations on non size increasing
functions

NSI Programs

Introduction
Analogy with Space-RCG

Introduction 2/3

@ Hofmann detects non size increasing programs in a typed
functional language by adding a special type ¢ which can
be seen as the type of pointers to free memory

Example (reverse without ¢)

(* with accumulator =)

rev(l) —> revl(l,nil)
revl (nil, acc) —-> acc
revl (cons(h,t),acc) -> revl(t,cons(h,acc))

NSI Programs

Introduction
Analogy with Space-RCG

Introduction 2/3

@ Hofmann detects non size increasing programs in a typed
functional language by adding a special type ¢ which can
be seen as the type of pointers to free memory

Example (reverse with ¢)

(* with accumulator =)

rev(l) —> revl(l,nil)
revl (nil, acc) —-> acc
revl (cons (d,h,t),acc) -> revl(t,cons(d,h,acc))

@ simply, the constructor consumes one diamond d

NSI Programs

Introduction
Analogy with Space-RCG

Introduction 2/3

@ Hofmann detects non size increasing programs in a typed
functional language by adding a special type ¢ which can
be seen as the type of pointers to free memory

Example (reverse on Stack-Machine)

0
1
2
3:
4

: if 1 = [] then goto 4;

: h,d:=pop(l); (xfrees a dx)

3 push(d,h,acc); (xconsumes a dx)
: goto O;

: end;

NSI Programs

Introduction
Analogy with Space-RCG

Introduction 3/3

: if 1 = [] then goto 4;
: h,d:=pop(1);
: push (d, h,acc);

: goto O;
: end;

S w NP O

Reverse represented as CFG :

NSI Program:)
Sl Programs Introduction

Analogy with Space-RCG

Analogy with Space-RCG

: goto O;
: end;

S w NP O

0
: if 1 = [] then goto 4;
: h,d:=pop(1);
push (d, h, acc) ;

Add a weight (corresponding to

the space used by the program)

to the CFG and we obtain the +1
following RCG :

Compilers

Section 2

Principles
Analysis

[
o
K
o
£
3]
o

LLVM and Tools

Principles

Principles
Analysis

[
o
K
o
£
3]
o

LLVM and Tools

Principles

Optimizer
Compiler

IR

Frontend

Principles
Analysis

Compilers

LLVM and Tools

o
Q@
2

O

c
=
o

= —_
(0]

2

= £

o (@]

(@) (@)

d /7

n |

e |

-— |

C

o

H I

I

Principles
Analysis

[
@
K
o
£
3]
o

LLVM and Tools

Principles

IR

S Optimizer H

Principles
Analysis

[
@
K
o
£
3]
o

LLVM and Tools

Principles

IR

S Optimizer H
Analysis
Compiler

19

Principles
Compilers Analysis
LLVM and Tools

Analysis

@ To make some optimizations we need analysis

@ These optimizations and analysis are managed as passes
on the programs’ Intermediate Representation
(Gimple/RTL for GCC, LLVM IR for LLVM)

@ A lot of passes already exist. For instance in gcc :

$ gcc —c ——help=optimizers -Q | wc -1

184

$ gcC -c -0 —-help=optimizers -Q | dgrep enabled | weCc -1
76

$ gcCc -c -02 --help=optimizers -Q | grep enabled | wCc -1
105

$ gcCc -c -03 --help=optimizers -Q | grep enabled | wCc -1
112

10/19

Principles
Compilers Analysis
LLVM and Tools

Analysis

A lot of passes already used by default :

$ gcc -fdump-tree-all -fdump-rtl-all loop.c -o loopgcc
$ Il loop.c.x

loop.c.001t.
loop.c.003t. orlqlnal
loop.c.004t.gimple G|mp|e
loop.c.006t.vcg

loop.c.150r.expand
loop.c.151lr.sibling
loop.c.153r.initvals RTL
loop.c.154r.unshare

$ Il loop.c.» | we -1
43

A pass-manager uses analysis made previously to select the
next passes

11/19

Principles
Compilers Analysis
LLVM and Tools

GCC and LLVM

GCC LLVM
Performance =(+) =
Popular high 7 (deb)
Old 28 years 12 years

University of lllinois/NCSA
Licensing GPLv3 Open Source License (no
copyleft) (and Tools)

Modular (=)? built for
Documentation (=)? A
Community ? Huge and active !
o (2012) 16 commits/day, (2014) 34 commits/day,
Sl el 470 devs, 7.3 Mlines 2.6 Mlines

12/19

optimize code :
FileCheck
FileUpdate
arcmt-test
bugpoint
c-arcmt-test
c-index-test
llvm-PerfectSf
livm-ar
livm-as
clang-check
clang-format
clang-modernize
clang-tblgen

Compilers

count

diagtool

fpcmp

llc

lli

lli-child-target
livm-mc
livm-memarkup
livm-nm
livm-bcanalyzer
livm-c-test
livm-config
livm-cov

Principles
Analysis
LLVM and Tools

livm-dis
livm-dwarfdump
livm-extract
livm-link
livm-lit
livm-Ito
obj2yaml

opt

pp-trace
livm-objdump
livm-ranlib
llvm-readobj
llvm-rtdyld

LLVM Tools : OPT/PassManager and LLVM IR

@ LLVM framework comes with lot of tools to compile and

livm-stress
livm-symbolizer
livm-tblgen
macho-dump
modularize
clang
clang++

not

livm-size
rm-cstr-calls
tool-template
yaml2obj

13/19

Principles
Compilers Analysis
LLVM and Tools

LLVM Tools : OPT/PassManager and LLVM IR

@ LLVM framework comes with lot of tools to compile and
optimize code :

FileCheck count livm-dis llvm-stress
FileUpdate diagtool livm-dwarfdump livm-symbolizer
arcmt-test fpcmp livm-extract livm-tblgen
bugpoint llc livm-link macho-dump
c-arcmt-test lli livm-lit modularize
c-index-test lli-child-target livm-lto clang
llvm-PerfectSf livm-mc obj2yaml clang++
livm-ar livm-memarkup opt not

livm-as livm-nm pp-trace livm-size
clang-check livm-bcanalyzer livm-objdump rm-cstr-calls
clang-format livm-c-test livm-ranlib tool-template
clang-modernize livm-config llvm-readobj yaml2obj
clang-tblgen livm-cov llvm-rtdyld

@ LLVM offers good structures and tools to easily navigate
and manage Instructions

@ Create a module with a pass is pretty simple

13/19

Basic Data structure

Data structures, a Graph issue and demos

Section 3

Data structures, a Graph issue and demos

14/19

Basic Data structure
Data structures, a Graph issue and demos

Intermediate Representation

IR looks like assembly language but it's more readable. . .

15/19

Basic Data structure

Data structures, a Graph issue and demos

IR Data Structure

We go over LLVM data structures through iterators :

@ lterator over a Module
gives a list of Function

@ lterator over a Function
gives a list of
BasicBlock

@ lterator over a Basic
Block gives a list of
Instruction

@ lterator over a
Instruction gives a list of
Operands

//iterate on each module’s functions
for (Moduleiterator r=M.begin(),
Fe=M.end(); F!=Fe; ++F){
//iterate on each function’s basic block
or (Functioniterator b=r.begin(),
be=F.end(); b!=be; ++b){
//iterate on each BB’s instructions
for (BasicBlockiterator 1=b->begin(),
ie=b->end(); I!=ie; ++I){

16/19

Basic Data structure
Data structures, a Graph issue and demos

Bellman-Ford’s Algorithm

@ In our case we want to build a RCG and find the heaviest
path.

17/19

Basic Data structure
Data structures, a Graph issue and demos

Bellman-Ford’s Algorithm

@ In our case we want to build a RCG and find the heaviest
path.

@ We already have the CFG...

17/19

Basic Data structure
Data structures, a Graph issue and demos

Bellman-Ford’s Algorithm

@ In our case we want to build a RCG and find the heaviest
path.

@ We already have the CFG...
@ We can find the weight of each BasicBlock. . .

17/19

Basic Data structure
Data structures, a Graph issue and demos

Bellman-Ford’s Algorithm

@ In our case we want to build a RCG and find the heaviest
path.

@ We already have the CFG...
@ We can find the weight of each BasicBlock. . .
@ we can calculate the heaviest path. ..

17/19

Basic Data structure
Data structures, a Graph issue and demos

Bellman-Ford’s Algorithm

@ In our case we want to build a RCG and find the heaviest
path.

@ We already have the CFG...

@ We can find the weight of each BasicBlock. . .

@ we can calculate the heaviest path. ..

@ and detect positive loops with the Bellman-Ford’s Algorithm

17/19

Basic Data structure
Data structures, a Graph issue and demos

Bellman-Ford’s Algorithm

@ Initialization :
all vertices with -infinite weight except the first
© Relaxation of each vertices :
take the highest weight regarding all the edges converging
toward this node
© Check for positive-weight cycle :
if one edge u — v with a weight w has
weight[u] + w > weight[v] it's a positive cycle

18/19

Basic Data structure
Data structures, a Graph issue and demos

A new issue

This is easy in one source file. ..

But if we consider the fact that we need all the function’s
weight, we will need to develop a tool capable to find
dependences between each source file and collect all the
informations needed to calculate the local functions.

19/19

Basic Data structure
Data structures, a Graph issue and demos

[§ AmADIO (R.), COUPET-GRIMAL (S.), ZILIO (S. Dal) and
JAKUBIEC (L.). —
A functional scenario for bytecode verification of resource
bounds. In : Computer Science Logic, 12th International
Workshop, CSL04. pp. 265-279. —
Springer.

[§ BAILLOT (P) and TERUI (K.). —
Light types for polynomial time computation in lambda
calculus. Information and Computation, vol. 201 (1), 2009,
pp. 41-62.

[§ BELLANTONI (S.) and COOK (S.). —
A new recursion-theoretic characterization of the poly-time
functions. Computational Complexity, vol. 2, 1992, pp.
97-110.

[BONFANTE (G.), MARION (J.-Y.) and MOYEN (J.-Y.). —

19/19

Basic Data structure
Data structures, a Graph issue and demos

Quasi-interpretations a way to control resources.
Theoretical Computer Science, vol. 412 (25), 2011, pp.
2776 — 2796.

[H GIRARD (J.-Y.). —
Linear Logic. Theoretical Computer Science, vol. 50, 1987,
pp. 1-102.

[§ HOFMANN (M.). —
Linear types and Non-Size Increasing polynomial time
computation. In : Proceedings of the Fourteenth IEEE
Symposium on Logic in Computer Science (LICS’99), pp.
464—-473.

4 LEE (C.S.), JONES (N. D.) and BEN-AMRAM (A. M.). —
The Size-Change Principle for Program Termination. pp.
81-92. —

ACM press.

19/19

	NSI Programs
	Introduction
	Analogy with Space-RCG

	Compilers
	Principles
	Analysis
	LLVM and Tools

	Data structures, a Graph issue and demos
	Basic Data structure

